余弦定理公式(共4页).doc

上传人:飞****2 文档编号:5459876 上传时间:2022-01-08 格式:DOC 页数:4 大小:246.50KB
返回 下载 相关 举报
余弦定理公式(共4页).doc_第1页
第1页 / 共4页
余弦定理公式(共4页).doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《余弦定理公式(共4页).doc》由会员分享,可在线阅读,更多相关《余弦定理公式(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上 1三角形基本公式:(1)内角和定理:A+B+C=180,sin(A+B)=sinC, cos(A+B)= -cosC,cos=sin, sin=cos(2)面积公式:S=absinC=bcsinA=casinBS= pr = (其中p=, r为内切圆半径)(3)射影定理:a = bcosC + ccosB;b = acosC + ccosA;c = acosB + bcosA2正弦定理:证明:由三角形面积得画出三角形的外接圆及直径易得:3余弦定理:a2=b2+c2-2bccosA, ; 证明:如图ABC中,当A、B是钝角时,类似可证。正弦、余弦定理可用向量方法证明。

2、要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题4利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinAab时有两解;a=bsinA或a=b时有 解;absinA时无解。5利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。6熟练掌握实际问题向解斜三角形类型的转化,能在应用题中抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;提高运用所学知识解决实际问题的能力历年考题 如图,在中,(1)求的值;(2)求的值. 解(

3、1): 由余弦定理, (2)解:由,且得由正弦定理: 解得。所以,。由倍角公式,且,故.解题方法:已知两边夹角,用余弦定理,由三角函数值求三角函数值时要注意“三角形内角”的限制.在ABC中,已知a=,b=,B=45,求A,C及边c解:由正弦定理得:sinA=,因为B=4590且ba,所以有两解A=60或A=120(1)当A=60时,C=180-(A+B)=75, c=,(2)当A=120时,C=180-(A+B)=15 ,c=解题方法:已知两边和其中一边的对角解三角形问题,用正弦定理求解,必需注意解的情况的讨论如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救 甲

4、船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到)?解 连接BC,由余弦定理得_10_A_北_20_C_BBC2=202+10222010COS120=700 于是,BC=10 30 , sinACB=, ACB90 ACB=41乙船应朝北偏东71方向沿直线前往B处救援 已知O的半径为R,在它的内接三角形ABC中,有成立,求ABC面积S的最大值解:由已知条件得即有 ,又 当时, 如图,已知是边长为的正三角形, 、分别是边、上的点,线段经过的中心.设.(1) 试将、的面积(分别记为与)表示为的函数;(2) 求的最大值与最小值.解: (1)因为为边长为的正三角形的中心, 所以 由正弦定理 因为,所以当时,的最大值; 当时, 的最小值.专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 教育教学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁