数字电路与~数字电子技术课后答案内容第四章.doc

上传人:小** 文档编号:545020 上传时间:2018-10-23 格式:DOC 页数:19 大小:1.23MB
返回 下载 相关 举报
数字电路与~数字电子技术课后答案内容第四章.doc_第1页
第1页 / 共19页
数字电路与~数字电子技术课后答案内容第四章.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《数字电路与~数字电子技术课后答案内容第四章.doc》由会员分享,可在线阅读,更多相关《数字电路与~数字电子技术课后答案内容第四章.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、|第四章 逻辑函数及其符号简化1 列出下述问题的真值表,并写出逻辑表达式:(1) 有 A、B、C 三个输入信号,如果三个输入信号中出现奇数个 1 时,输出信号F=1,其余情况下,输出 F= 0.(2) 有 A、B、C 三个输入信号,当三个输入信号不一致时,输出信号 F=1,其余情况下,输出为 0.(3) 列出输入三变量表决器的真值表.解: ( 1 )F= ABC+ B C+A +ABC( 2 )F= (A+B+C) ( A+ B+ C)( 3 )F= ABC+A BC+AB C+ABC2. 对下列函数指出变量取哪些组值时,F 的值为“1”:(1) F= AB+ AB(2) F= AB+ C(3

2、) F= (A+B+C) (A+B+ ) (A+ +C) (A+ B+ C)解:(1) AB = 00 或 AB=11 时 F=1(2) ABC110 或 111,或 001,或 011 时 F=1(3) ABC = 100 或 101 或 110 或 111 时 F=13. 用真值表证明下列等式.(1) A+BC = (A+B) (A+C)(2) ABC+A BC+AB C= BC AB+AC C+AB AB(3) +=ABC+(4) AB+BC+AC=(A+B)(B+C)(A+C)A B C F0 0 0 00 0 1 10 1 0 10 1 1 01 0 0 11 0 1 01 1 0

3、01 1 1 1A B C F0 0 0 00 0 1 10 1 0 10 1 1 11 0 0 11 0 1 11 1 0 11 1 1 1A B C F0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 11 1 0 11 1 1 1|(5) ABC+ A+ B+ C=1证: ( 1 )( 2 )( 3 )( 4 )( 5 )A B C A+BC (A+B)(A+C)0 0 0 0 00 0 1 0 00 1 0 0 00 1 1 1 11 0 0 1 11 0 1 1 11 1 0 1 11 1 1 1 1A B C AB+BC+AC (A+B)(B+C)(

4、A+C)0 0 0 0 00 0 1 0 00 1 0 0 00 1 1 1 11 0 0 0 01 0 1 1 11 1 0 1 11 1 1 1 1A B C AB + BC + AC ABC + A B C0 0 0 1 10 0 1 0 00 1 0 0 00 1 1 0 01 0 0 0 01 0 1 0 01 1 0 0 01 1 1 1 1A B C ABC + ABC + ABC BCABC + ACA B C + ABABC0 0 0 0 00 0 1 0 00 1 0 0 00 1 1 1 11 0 0 0 01 0 1 1 11 1 0 1 11 1 1 0 0A B C

5、 ABC + A + B + C0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 |4. 直接写出下列函数的对偶式 F及反演式 的函数表达式.(1) F= AB (C+D)B CD+B ( +D)(2) F= A + ( + ) (A+C)(3) F= AB+ + E+(4) F= 解:(1) F= +B+CD+(B+ C+ D) (B+ DF= A+ B+ +( +C+D) B+C (2) F= (A+ ) A)(F= ( A+ C) C+(3) F= B+ D(F= )(+ )5. 若已知 x+y = x+z,问

6、 y = z 吗?为什么?解:y 不一定等于 z,因为若 x=1 时,若 y=0,z=1,或 y=1,z=0,则 x+y = x+z = 1,逻辑或的特点,有一个为 1 则为 1。6. 若已知 xy = xz,问 y = z 吗?为什么?解:y 不一定等于 z,因为若 x = 0 时,不论取何值则 xy = xz = 0,逻辑与的特点,有一个为 0则输出为 0。7. 若已知 x+y = x+z Xy = xz 问 y = z 吗? 为什么?解:y 等于 z。因为若 x = 0 时,0+y = 0+z,y = z,所以 xy = xz = 0,若 x = 1 时, x+y = x+z = 1,而

7、 xy = xz 式中 y = z 要同时满足二个式子 y 必须等于 z。8.用公式法证明下列个等式(1) AC+ B+BC+ CD= A+BC证:左= + BC += + BC + = (1+ ) + BC|= A+BC = 右边(2) BC D+B D+ACD+ AB CD+ CD+B C+BCD= BC+B C+BD证:左 = ( C + CD+ACD )+(ABCD+BCD+B D)+(B D+B D+ AB )= C( + D+AD)+BD(AC+C+ )+B (D+ D+ A)= C+B +BD(3) BAB+ A+ C=1证:左 = ( D+ CD) + ( )+(C+ )= (

8、 + )( + )+ D( + )+C+ D= + + + + D + +C+= B+ A+ D B+ +C+= + + + D+C+= + C+C+ D=1(4) x+wy+uvz= (x+u+w) (x+u+y) (x+v+w) (x+v+y) (x+z+w) (x+z+y)证:对等式右边求对偶,设右边=F,则F= xuw+xuy+xvw+xvy+xzw+xzy= xu (w+y)+xv (w+y) +xz (w+y)= (w+y) (xu+xv+xz)F = F= wy+(x+u)(x+v) (x+z)= wy +(x+xu+xv+uv) (x+z)= wy+(x+uv)(x+z)= w

9、y+x+xuv+xz+uvz= wy+x+uvz= wy+x+uvz(5) ABC=ABC证:左 = (AB)C= + (AB) = (AB)C+ ( )= AB C(6) = 证:左 = )(+= (AB)+ (AB)+C= (AB) C+(AB)C= AB+AB + BC+A BC右 = ( )= ( ) + = ( +AB) + A= BC+AB + B|= ABC+AB +(AB)C= +AB + BC+A BC9.证明(1) 如果 a b+ b = c,则 a + c = b,反之亦成立(2) 如果 +ab = 0,则 yx= a +b证:(1) a c+ c = a ( )+ (a

10、 + b)= a (ab+ b)+ b= ab+ b = b(2) +ab = 0 说明 a = 或 b = ay+ax= = xy= ( + )(a+ )= a + += a x+ y= a +b10.写出下列各式 F 和它们的对偶式,反演式的最小项表达式(1)F= ABCD+ACD+B CD(2)F= A B+ B+BC(3)F= + B解:(1) F= m )15,24(F=m (0,1,2,3,5,6,7,8,9,10,13,14)F=m (15,14,13,12,10,9,8,7,6,5,2,1)(2) F= m (2,3,4,5,7)=m (0,1,6)F=m (7,6,1)(3)

11、 F= m (1,5,6,7,8,913,14,15)F= m (0,1,3,4,10,11,12)F= m (15,13,12,11,5,4,3)11.将下列函数表示成最大项之积(1) F= (AB)(A+B)+(AB)AB(2) F= (AB)+ A(BC)解:(1) F= (AB) (A+B+AB)= ( B+AB)(A+B)= AB+AB= AB=m (3)= M (0,1,2)(2) F= (AB)+ A( C+B C)= B+A B+ C+ B= B+A + C|= m (1,2,3,4,5)= M (0,6,7)12. 用公式法化简下列各式(1) F= A+AB C+ABC+BC

12、+B解:F= A(1+B +BC)+B(C+1) = A+B(2) F= A BC+ D+A解:F=A +A C+ D(3) F= (A+B)(A+B+C)( +C)(B+C+D)解:F= AB+ABC+ C+BCD= AB+ AC+BCD= AB+ CF= F= (A+B)( +C)(4) F= B+解:F= AB+ A+BC+= AB+ C+ Ca) F= )A+(解:F= BC+AC(5) F= (x+y+z+ w) (v+x) ( v+y+z+ w)解:F= xyz +vx+ yz= vx+ vyz +xyz= vx+ yzF= F= (v+x) ( +y+z+ w)13.指出下列函数

13、在什么输入组合时使 F=0(1) F= m (0,1,2,3,7)(2) F= m (7,8,9,10,11)解:(1) F 在输入组合为 4,5,6 时使 F= 0(2) F 在输入组合为 0,1,2,3,8,10,11,13,14,15 时使 F= 014.指出下列函数在什么组合时使 F=1(1) F= M (4,5,6,7,8,9,12)(2) F= M (0,2,4,6)解:(1) F 在输入组合为 0,1,2,3,8,10,11,13,14,15 时使 F=1;(2) F 在输入组合为 1,3,5,7 时使 F=115.变化如下函数成另一种标准形式(1) F= m (1,3,7)(2

14、) F= m (0,2,6,11,13,14)(3) F= M (0,3,6,7)|(4) F= M (0,1,2,3,4,6,12)解:(1) F= M (0,2,4,5,6)(2) F= M (1,3,4,5,7,8,9,10,12,15)(3) F=m (1,2,4,5)(4) F=m (5,7,8,9,10,11,13,14,15)16.用图解法化简下列各函数(1) 化简题 12 中(1),(3),(5)(2) F= m (0,1,3,5,6,8,10,15)(3) F= m (4,5,6,8,10,13,14,15)(4) F= M(5,7,13,15)(5) F= M (1,3,9

15、,10,11,14,15)(6) F= m (0,2,4,9,11,14,15,16,17,19,23,25,29,31)(7) F= m (0,2,4,5,7,9,13,14,15,16,18,20,21,23,25,29,30,31)解:(1) 化简题 12 中(1),(3),(5) F= AB+A CF= (A+B) ( +C)F= (AC+ BC)( +AC+ AC)= A C+ C+ACF=AC+ BC图 P4.A16 ( 1 )(2) F= m (0,1,3,5,6,8,10,15)F= ABC+ D+ D+A +ABCD+ BC(3) F=m (4,5,6,8,9,10,13,1

16、4,15)ABC 00 01 11 1001F = A + B( a )0 1 1 10 1 1 1ABC 00 01 11 1001( C )0 0 0 01 0 1 1ABCD 00 01 11 1000011110( b )0 1 0 00 1 0 00 1 1 10 1 1 1ABCD 00 01 11 1000011110图P4.A16 ( 2 )1 11 1 1 1 1 1ABCD 00 01 11 1000011110图P4.A16 ( 3 )1 11 1 11 1 1 1|F= AB C+A +ABD+BC D+ AC(4) F= M(5,7,13,15)F= BDF= B+

17、D(5) F= M (1,3,9,10,11,14,15)F= AC+ BDF = ( A+ C)(B+ )(6) F=m (0,2,4,9,11,14,15, 16,17,19,23,25,29,31)F= ABDE+ C+ ABCD+ B CE+AB DE+ACDE+A BCD+A E(7) F=m (0,2,4,5,7,9,13,14,15,16,18,20,21,23,25,29,30,31) F= ACE+B DE+BCD+ BC + E17. 将下列各函数化简成与非一与非表达式,并用与非门实现(1) F= m (0,1,3,4,6,7,10,11,13,14,15)ABCD 00

18、01 11 1000011110图P4.A16 ( 4 )0 0 0 0 ABCD 00 01 11 1000011110图P4.A16 ( 5 )0 00 0 00 0ABCD 000 001 011 010 110 111 101 10000011110图P4.A16 ( 6 )1 1 11 1 1 11 1 1 1 11 1ABCD 000 001 011 010 110 111 101 10000011110图P4.A16 ( 7 )1 1 1 11 1 1 1 1 11 1 1 1 1 1 1 1|(2) F= m (0,2,3,4,5,6,7,12,14,15)(3) F= m (

19、0,1,4,5,12,13)(4) F= M(4,5,6,7,9,10,11,12)解: 圈“1”格化简(1) F=m (0,1,3,4,6,7,10,11,13,14,15)( b )图 P4.A17 (1)F= AC+BC+ ABD+ CD+ABD = ABDCBA(2) F=m (0,2,3,4,5,6,7,12,14,15)( b )图 P4.A17 ( 2 )F= AC+BC+ D+B + AB = ABDC(3) F=m (0,1,4,5,12,13) ( b )F= AC+B = B图 P4.A17 ( 3 )(4) F= M(4,5,6,7,9,10,11,12)ABCD 00

20、 01 11 1000011110( a )1 1 1 1 1 1 1 1 1 1 1ABCD 00 01 11 1000011110( a )1 1 111 1 1 1 1 1ABCD 00 01 11 1000011110( a )1 1 11 1 1 ABCD 00 01 11 1000011110( a )1 0 0 1 1 0 1 01 0 1 0 1 0 1 0|( b )图 P4.A17 ( 4 )F = AB+ABD+ABC+ CD= DCBA18. 将下列各函数化简成或非一或非表达式并用或非门实现(1) F= m (0,1,2,4,5)(2) F= m (0,2,8,10,1

21、4,15)(3) F= A + C+ CD(4) F= AB+ BC+ C解: 圈“0”格化简(1) F= m (0,1,2,4,5) ( b )图 P4.A18 ( 1 )F= AB+BCF = ( A+ B) ( + C) = C+B(2) F=m (0,2,8,10,14,15)( b )图 P4.A18 ( 2 )F= AD+B C+ BD+ BF= (A+ D)( +C) (B+ ) (A+ ) = B+ADC+BA(3) F= A + C+ CDABC 00 01 11 1001( a )1 1 0 11 0 0 1ABCD 00 01 11 1000011110( a )1 0 0 1 0 0 0 00 0 1 0 1 0 1 1ABCD 00 01 11 1000011110( a )0 0 0 1 0 0 0 11 1 0 1 1 1 0 1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁