《《消元解二元一次方程组》教案(共9页).doc》由会员分享,可在线阅读,更多相关《《消元解二元一次方程组》教案(共9页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上消元解二元一次方程组教案1第一课时新课标要求(一)知识与技能1知道代入法的概念2会用代入消元法解二元一次方程组(二)过程与方法1通过探索,了解解二元一次方程的“消元”思想,初步体会数学的化归思想2培养探索、自主、合作的意识,提高解题能力(三)情感、态度与价值观1在消元的过程中体会化未知为已知、化复杂为简单的化归思想,从而享受数学的化归美,提高学习数学的兴趣2通过研究解决问题的方法,培养学生合作交流意识与探究精神教学重点用代入法解二元一次方程组,基本方法是消元化二元为一元教学难点用代入法解二元一次方程组的基本思想是化归化陌生为熟悉教学方法1关于检验方程组的解的问题教学时
2、要强调代入“原方程组”和“每一个”这两点2教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性3教师讲解例题时要注意由简到繁,由易到难,逐步加深随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易这样不仅可以求解迅速,而且可以减少错误教师启发、引导,学生观察、试验、比较、思考,讨论、交流学习成果教学过程一、引入新课教师活动:请同学们回忆上节课我们讨论的篮球联赛的问题大家可以
3、得到两种方程组设此篮球队胜场,负场方法一:;方法二:方法一得到的方程是我们学过的一元一次方程大家很容易解得所以该篮球队胜18场,负场二、进行新课1代入消元法的概念方法二得到的是二元一次方程组,怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么联系?学生活动:思考、讨论、发现二元一次方程组中第1个方程说明,将第2个方程的换为,这个方程就化为一元一次方程教师活动:介绍消元思想,师生共同归纳代入消元法的概念归纳:消元思想:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想上面的解法,是把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现
4、消元,进而求得这个二元一次方程组的解这种方法叫做代入消元法,简称代入法2学习用代入消元法解二元一次方程教师活动:把下列方程写成用含的式子表示的形式:(1);(2)学生活动:独立完成,回答结果教师活动:出示例,巡视,指导学生解答例:用代入法解方程组学生活动:解答例,体验代入消元法解二元一次方程组,试着归纳用消元法解二元一次方程组的步骤分析:方程中的系数是,用含有的式子表示,比较就简便解:由,得 把代入,得(把代入可以吗?)解这个方程,得把代入,得(把代入或可以吗?)所以这个方程组的解是教师归纳总结强调:(1)一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程”由于
5、方程是由方程得到的,所以它只能代入方程,而不能代入方程(2)个未知数的值后,把它代入方程都能得到另一个未知数的值,其中代入方程最简捷教师活动:指导学生认真阅读教材例要求学生阅读思考找出题目中所包含的等量关系,列出二元一次方程组,并解答例2:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?学生活动:一生板演,余生自做教师活动:针对学生的解答进行点评分析:问题中包含两个条件:,大瓶所装消毒液+小瓶所装消毒液=总生产量解:设这些消毒液应该分装大瓶和小瓶根据大、小瓶数的比以及
6、消毒液分装量与总生产量的数量关系,得由,得把代入,得解这个方程,得把代入,得所以这个方程组的解是答:这些消毒液应该分装大瓶和小瓶上面解方程组的过程可以用下面的框图表示:三、课堂总结这节课我们介绍了二元一次方程组的一种解法-代入消元法了解到解二元一次方程组的基本思想是“消元”,即把二元变成“一元”在学习方法上,还要学会主动探索,从不同的角度来思考问题的学习方法,逐步理解数学的转化思想和整体代入思想四、课后练习1把下列方程改写成用含的式子表示的形式:(1);(2)2用代入法解下列方程组:(1)(2)3有48支队520名运动员参加篮、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只参加
7、一项比赛了;篮、排球队各有多少支参赛?4张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5小时后到达县城他骑车的平均速度是15千米/小时,步行的平均速度是5千米/小时,路程全长20千米他骑车与步行各用多少时间?第二课时新课标要求(一)知识与技能1掌握用加减消元法解二元一次方程组的步骤2能运用加减法解二元一次方程组3培养学生的计算能力和应用数学解决实际问题的意识(二)过程与方法经历探索用“消元”方法把二元一次方程组转化为一元一次方程,从而求方程组的解的过程,体会“消元”方法在解方程中的作用(三)情感、态度与价值观1进一步理解解二元一次组的消元思想,在化“未知为已知”的过程中,体验化归
8、的数学美2根据方程组的特点,引导学生多角度思考问题,培养开拓创新意识教学重点进一步渗透消元思想,掌握用加减消元法解二元一次方程组的原理及一般步骤;能熟练运用加减法解二元一次方程组教学难点明确用加减法解二元一次方程组的关键是必须使两个方程中同一个未知数的系数的绝对值相等教学方法通过复习上节课利用代入法解二元一次方程组的方法及其解题思想,引入新课,让学生观察比较,从而发现只要将相同未知数前的系数化为绝对值相等的值,即可实施加减消元法进一步让学生探究用代入法还是用加减法解方程组更简单,明确用加减法解题的优越性通过反复的训练、归纳;再训练、再归纳,从而积累用加减法解方程组的经验,进而上升到理论教学过程
9、一、创设问题情境,导入新课教师活动:请同学们考虑下列问题:1用代入法解二元一次方程组的基本思想是什么?2用代入法解下列方程组,并检验所得结果是否正确学生活动:口答第题,书面完成第题,通过投影展示学生的不同解法教师活动:对学生的解法给予肯定,激励问:对于二元一次方程是不是还有其它解法,也可以消去一个未知数,达到消元的目的呢?二、进行新课1对加减消元法的认识教师活动:第(2)题的两个方程中,未知数的系数有什么特点?(互为相反数)根据等式的性质,如果把这两个方程的左边与左边相加,右边与右边相加,就可以消掉,得到一个一元一次方程,进而求得二元一次方程组的解解:+,得解得把代入,得学生活动:比较用这种方
10、法得到的值是否与用代入法得到的相同(相同)上面方程组的两个方程中,因为的系数互为相反数,所以我们把两个方程相加,就消去了,观察一下的系数有何特点?(相等)方程和方程经过怎样的变化可以消去?(相减)学生活动:观察、思考,尝试用消元,解方程组,比较结果是否与用得到的结果相同(相同)教师活动:归纳总结两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程这种方法叫做加减消元法,简称“加减法”2加减消元法解二元一次方程组提问:比较上面解二元一次方程组的方法,是用代入法简单,还是用加减法简单?(加减法)在什么条件下可以用加减法进行消元?
11、(某一个未知数的系数相等或互为相反数)什么条件下用加法、什么条件下用减法?(某个未知数的系数互为相反数时用加法,系数相等时用减法)教师活动:出示课本例3要求学生思考“不用代入法怎样解”?例3:用加减法解方程组学生活动:在教师的引导下总结怎样解未知数的系数不一定刚好相等,也不一定互为相反数的二元一次方程用最小公倍数将同一未知数系数转化为相等或相反的数,然后再把两个方程的左右两边分别相加或相减一生板演,师生共评解:3,得2,得+,得,把代入,得,所以这个方程组的解是教师活动:出示投影片加减消元法解二元一次方程组的基本思想是什么?(两方程中同一未知数的系数不相等也不相反,所以不能通过直接加减来消元为
12、消元需要在方程两边乘适当的数,使某个未知数在两方程中的系数相等或相反)用加减消元法解二元一次方程组的一般步骤是什么?学生活动:分组讨论、总结,解决以上问题教师活动:和学生一道分析讨论结果,投影出示加减消元的基本思想和解二元一次方程组的一般步骤学生活动:阅读例师生共同分析列出方程组然后交由学生解方程组例4:2台大收割机和5台小收割机均工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机均工作5小时共收割小麦8公顷1台大收割机和1台小收割机每小时各收割小麦多少公顷?教师活动:在解题中鼓励学生主动探索与交流,不强求方法统一,比如上题用整体代入也可分析:如果1台收割机和1台小收割机每小时各收割小
13、麦公顷和公顷,那么2台大收割机和5台小收割机均工作1小时工收割小麦 公顷,3台大收割机和2台小收割机均工作1小时共收割小麦 公顷由此考虑两种情况下的工作量解:设1台大收割机和1台小收割机每小时各收割小麦公顷和公顷根据两种工作方式中的相等关系,得方程组去括号,得-,得解这个方程,得把代入,得因此,这个方程组的解是答:1台大收割机和1台小收割机每小时各收割小麦0.4公顷和0.2公顷此题解方程组的过程可以用下面的框图表示:三、课堂总结加减法解二元一次方程组的关键在于将相同字母的系数化为绝对值相等的值,即可使用加减法消元故在教学中应反复教会学生观察并抓住解题的特征从而方便解题第三课时新课标要求(一)知
14、识与技能1理解二元一次方程和它的解的概念,会检验一对数值是不是某一个二元一次方程的解2理解二元一次方程组和它的解等概念3能够灵活运用代入法、加减法解二元一次方程组(二)过程与方法1使学生能正确地选择解题方法,熟练的解二元一次方程组2通过逆向思维训练,培养学生分析问题和解决问题的能力(三)情感、态度与价值观体会数学的转化思想的奇妙作用,培养学生学习数学的兴趣教学重点二元一次方程组的解法教学难点如何选择适当的方法求解二元一次方程组教学方法以复习的形式,以课堂练习为主,让学生学会解方程时要具体问题具体分析,合理选择解题方法教学过程一、创设问题情景,导入新课教师活动:提问:解二元一次方程组有哪几种方法
15、?它们各适用于什么情况下?学生活动:充分讨论、回答师归纳二、课堂练习教师活动:出示练习:已知四个方程组:1234分别指出每一方程组比较简捷的解法学生活动:通过交流,互相取长补短,以口答为主1由得用含的代数式表示,再代入(2)单独用代入和加减都不简单,可将代入法和加减法结合应用将可得 由,可求出 将代入即可求解(3)可用加减法先消去(4)加减消元或两种方法结合教师活动:要求学生做课本练习学生活动:选择合适的解题方法完成练习,师生共同评析三、课堂总结解二元一次方程组的关键是要化“二元”为“一元”,求解关键在于消元当方程组中某个未知数的系数为或,或常数项为零时,用代入消元法比较简单,加减消元法的基本思路是根据等式的基本性质,化两个方程中的某个未知系数的绝对值相等,通过两个方程组加减,从而达到消去一个未知数的目的我们通过本节课的复习,熟练解二元一次方程组,这关键在于理解解二元一次方程组的过程是“消元”,即化二元为一元专心-专注-专业