《PWM控制直流调速系统毕业设计(共45页).doc》由会员分享,可在线阅读,更多相关《PWM控制直流调速系统毕业设计(共45页).doc(45页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上题 目 PWM控制直流调速系统设计 院 系: 西南交通大学网络教育学院 专 业: 电气工程及其自动化 姓 名: 陈兆坤 指导教师: 郭 蕾 西 南 交 通 大 学 网 络 教 育 学 院院系 西南交通大学网络教育学院 专 业 电气工程及其自动化 年级 2008-15班 学 号 姓 名 陈兆坤 学习中心 山东纺织学习中心 指导教师 郭蕾 题目 PWM控制直流调速系统设计 指导教师评 语 是否同意答辩 过程分(满分20) 指导教师 (签章) 评 阅 人评 语 评 阅 人 (签章)成 绩 答辩组组长 (签章) 年 月 日 毕 业 设 计 任 务 书班 级 2008-15班
2、学生姓名 陈兆坤 学 号 发题日期: 年 月 日 完成日期: 年 月 日题 目 PWM控制直流调速系统设计 题目类型:工程设计 技术专题研究 理论研究 软硬件产品开发一、 设计任务及要求1:直流调速系统的设计技术指标。 2:PWM控制直流系统电路设计。 3:PWM系统实验验证。 二、 应完成的硬件或软件实验PWM控制直流调速系统测定直流电动机的各项参数和时间参数,并应用经典控制理论的工程设计方法设计转速和电流双闭环直流调速系统。以SG3525为核心实现PWM脉冲调速,形成无静差的转速电流双闭环控制。 三、 应交出的设计文件及实物(包括设计论文、程序清单或磁盘、实验装置或产品等)毕业设计、毕业论
3、文。 四、 设计进度安排第一部分 搜集资料,整理实际工作中一些经验。 ( 2 周)第二部分 整理成理论片断。 ( 4 周)第三部分 成文。 ( 6 周)评阅及答辩 ( 周) 指导教师: 年 月 日学院审查意见:审 批 人: 年 月 日诚信承诺一、 本设计是本人独立完成;二、 本设计没有任何抄袭行为;三、 若有不实,一经查出,请答辩委员会取消本人答辩资格。承诺人(钢笔填写):年月日 目 录摘要8Abstract9前言10第1章 直流调速系统的方案设计11 1.1 设计技术指标要求111.2 现行方案的讨论与比较111.3 选择PWM控制调速系统的理由131.4 选择IGBT的H桥型主电路的理由1
4、31.5 采用转速、电流双闭环的理由14第2章 PWM控制直流调速系统主电路设计 152.1 主电路结构设计152.1.1 PWM变换器介绍152.1.2 泵升电路212.2 参数设计222.2.1 IGBT的参数222.2.2 缓冲电路参数232.2.3 泵升电路参数23第3章 PWM控制直流调速系统控制电路设计24 3.1 PWM信号发生器243.1.1 SG3525芯片的主要特点243.1.2 SG3525引脚各端子功能253.1.3 SG3525的工作原理26 3.2 转速、电流双闭环设计273.2. 1 转速、电流双闭环系统的组成273.2.2 转速、电流双闭环调速系统的静特性283
5、.2.3 电流调节器设计313.2.4 速度调节器设计33第4章 系统实验验证35 4.1 系统结框图35 4.2 系统工作原理35 4.3 系统单元调试36 4.3.1 基本调试36 4.3.2 脉宽发生单元的整定364.3.3 转速反馈调节器、电流反馈调节器的整定36 4.4 实验结果374.4.1 开环机械特性测试374.4.2 闭环机械特性测试37结束语39致谢40参考文献41PWM控制直流调速系统设计摘 要在电气时代的今天,电动机在工农业生产、人们日常生活中起着十分重要的作用。直流电机是最常见的一种电机,在各领域中得到广泛应用。研究直流电机的控制和测量方法,对提高控制精度和响应速度、
6、节约能源等都具有重要意义。电机调速问题一直是自动化领域比较重要的问题之一。不同领域对于电机的调速性能有着不同的要求,因此,不同的调速方法有着不同的应用场合。本文基于PWM的双闭环直流调速系统进行了研究,并设计出应用于直流电动机的双闭环直流调速系统。首先描述了变频器的发展历程,提出了PWM调速方法的优势,指出了未来PWM调速方法的发展前景,点出了研究PWM调速方法的意义。应用于直流电机的调速方式很多,其中以PWM变频调速方式应用最为广泛,而PWM变频器中,H型PWM变频器性能尤为突出,作为本次设计的基础理论,本文将对PWM的理论进行详细论述。在此基础上,本文将做出SG3525单片机控制的H型PW
7、M变频调速系统的整体设计,然后对各个部分分别进行论证,力图在每个组成单元上都达到最好的系统性能。 关键词:直流调速 ;双闭环 ;PWM ;SG3525 ;直流电机专心-专注-专业DC-drive speed system with PWMABSTRACTIn electrical times today, the electric motor in the industry and agriculture production, the people daily life is playing the very vital role. The direct current machine is
8、 the most common one kind of electrical machinery, obtains the widespread application in various domains. The research direct current machines control and the measuring technique, to increase the control precision and the speed of response, the frugal energy and so on have the important meaning. A p
9、roblem about speed-modulation of DC motor is very important in the field automatic. The requests to the effect after the speed-modulation of the DC motor are different in different fields. Then, different speed-modulation ways are using in different fields.This paper researches DC-drive speed system
10、 with a dual-converter and dual-closed-loop based PWM, discussing a new control method that combines PWM with D C-drive, designs applies in direct current motors double closed loop current velocity modulation system. DC motor is used very generally because its speed-modulation effect is very good an
11、d its speed-modulation is easily to be realized. PWM theory is used most generally among the speed-modulation ways. The text will introduce the H-PWM way mostly. We will try to do modulation to the DC motor with SG3525. The importance of the text is the parts which are composed the system. Another i
12、mportance is the principles of working about every parts.Key word: DC speed regulation ;Double-loop ;PWM ;SG3525;DC moter; PWM控制直流调速系统设计前 言在现代科学技术革命过程中,电气自动化在20世纪的后四十年曾进行了两次重大的技术更新。一次是元器件的更新,即以大功率半导体器件晶闸管取代传统的变流机组,以线形组件运算放大器取代电磁放大器件。后一次技术更新主要是把现代控制理论和计算机技术用于电气工程,控制器由模拟式进入了数字式。在前一次技术更新中,电气系统的动态设计仍采用经
13、典控制理论的方法。而后一次技术更新是设计思想和理论概念上的一个飞跃和质变,电气系统的结构和性能亦随之改观。在整个电气自动化系统中,电力拖动及调速系统是其中的核心部分。现代的电力拖动控制系统都是由惯性很小的晶闸管、电力晶体管或其他电力电子器件以及集成电路调节器等组成的。经过合理的简化处理,整个系统一般都可以用低阶近似。而以运算放大器为核心的有源校正网络(调节器),和由 R、C等元件构成的无源校正网络相比,又可以实现更为精确的比例、微分、积分控制规律,于是就有可能将各种各样的控制系统简化和近似成少数典型的低阶系统结构。如果事先对这些典型系统作比较深入的研究,把它们的开环对数频率特性当作预期的特性,
14、弄清楚它们的参数和系统性能指标的关系,写成简单的公式或制成简明的图表,则在设计实际系统时,只要能把它校正或简化成典型系统的形式,就可以利用现成的公式和图表来进行参数计算,这样,就建立了工程设计方法的可能性。目前,随着大功率电力电子器件的迅速发展,交流变频调速技术已日臻成熟并日渐成为实际应用的主流,但这并不意味着传统的直流调速技术已经完全退出了实际应用的舞台。相反,近几年交流变频调速在控制精度的提高上遇到了瓶颈,于是直流调速的优势就显现了出来。直流调速仍然是目前最可靠,精度最高的调速方法。譬如在对控制精度有较高要求的造纸,转台,轮机定位等系统中仍离不开直流调速装置,因此加强对直流调速系统的研究还
15、是很有必要的。鉴于直流调速系统在国民经济和工农业生产以及国防事业中的重要作用,有必要对直流调速系统作进一步的研究和开发。第1章 直流调速系统的方案设计1.1 设计技术指标要求1.直流电动机:型号:DJ15功率:485W电枢电压:220V电枢电流:1.2A额定转数:1600rpm2.调速范围:1:12003.起动时超调量:电流超调量:;转速超调量: 1.2 现行方案的讨论与比较直流电动机的调速方法有三种:(1)调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较
16、小,能快速响应,但是需要大容量可调直流电源。(2)改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。(3)改变电枢回路电阻R。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动系统中采用。弱磁调速范围不大,往往是和调压
17、调速配合使用,在额定转速以上作小范围的升速。对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。因此,自动控制的直流调速系统往往以调压调速为主速。改变电枢电压调速是直流调速系统采用的主要方法,调节电枢供电电压需要有专门的可控直流电源,常用的可控直流电源有以下三种:(1)旋转变流机组。用交流电动机和直流发电机组成机组,以获得可调的直流电压。(2)静止可控整流器。用静止的可控整流器,如汞弧整流器和晶闸管整流装置,产生可调的直流电压。(3)直流斩波器或脉宽调制变换器。用恒定直流电源或不可控整流电源供电,利用直流斩波或脉宽调制的方法产生可调的直流平均电压。由于旋转变流机组缺点太
18、多,采用汞弧整流器和闸流管这样的静止变流装置来代替旋转变流机组,形成所谓的离子拖动系统。离子拖动系统克服旋转变流机组的许多缺点,而且缩短了响应时间,但是由于汞弧整流器造价较高,体积仍然很大,维护麻烦,尤其是水银如果泄漏,将会污染环境,严重危害身体健康。目前,采用晶闸管整流供电的直流电动机调速系统(即晶闸管电动机调速系统,简称V-M系统,又称静止Ward-Leonard系统)已经成为直流调速系统的主要形式。但是,晶闸管整流器也有它的缺点,主要表现在以下方面:(1)晶闸管一般是单向导电元件,晶闸管整流器的电流是不允许反向的,这给电动机实现可逆运行造成困难。必须实现四象限可逆运行时,只好采用开关切换
19、或正、反两组全控型整流电路,构成V-M可逆调速系统,后者所用变流设备要增多一倍。(2)晶闸管元件对于过电压、过电流以及过高的du/dt和di/dt十分敏感,其中任意指标超过允许值都可能在很短时间内元件损坏,因此必须有可靠的保护装置和符合要求的散热条件,而且在选择元件时还应保留足够的余量,以保证晶闸管装置的可靠运行。(3)晶闸管的控制原理决定了只能滞后触发,因此,晶闸管可控制整流器对交流电源来说相当于一个感性负载,吸取滞后的无功电流,因此功率因素低,特别是在深调速状态,即系统在较低速运行时,晶闸管的导通角很小,使得系统的功率因素很低,并产生较大的高次谐波电流,引起电网电压波形畸变,殃及附近的用电
20、设备。如果采用晶闸管整流装置的调速系统在电网中所占容量比重较大,将造成所谓的“电力公害”。为此,应采取相应的无功补偿、滤波和高次谐波的抑制措施。(4)晶闸管整流装置的输出电压是脉动的,而且脉波数总是有限的。如果主电路电感不是非常大,则输出电流总存在连续和断续两种情况,因而机械特性也有连续和断续两段,连续段特性比较硬,基本上还是直线;断续段特性则很软,而且呈现出显著的非线性。由于以上种种原因,所以选择了脉宽调制变换器进行改变电枢电压的直流调速系统。1.3 选择PWM控制系统的理由脉宽调制器UPW采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全
21、、通用性强的单片集成PWM控制器。由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。PWM系统在很多方面具有较大的优越性 :1)PWM调速系统主电路线路简单,需用的功率器件少。2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。3)低速性能好,稳速精度高,调速范围广,可达到1:10000左右。4)如果可以与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强。5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高。 6)直流电源采用不可控整流时,电网功率因数比相控整流器高。 变频调速很快为广大电动机用户所
22、接受,成为了一种最受欢迎的调速方法,在一些中小容量的动态高性能系统中更是已经完全取代了其他调速方式。由此可见,变频调速是非常值得自动化工作者去研究的。在变频调速方式中,PWM调速方式尤为大家所重视,这是我们选取它作为研究对象的重要原因。 1.4 选择IGBT的H桥型主电路的理由IGBT的优点:1) IGBT的开关速度高,开关损耗小。2) 在相同电压和电流定额的情况下,IGBT的安全工作区比GTR大,而且具有耐脉冲电流冲击的能力。3) IGBT的通态压降比VDMOSFET低,特别是在电流较大的区域。4) IGBT的输入阻抗高,其输入特性与电力MOSFET类似。5) 与电力MOSFET和GTR相比
23、,IGBT的耐压和通流能力还可以进一步提高,同时可保持开关频率高的特点。在众多PWM变换器实现方法中,又以H型PWM变换器更为多见。这种电路具备电流连续、电动机四象限运行、无摩擦死区、低速平稳性好等优点。本次设计以H型PWM直流控制器为主要研究对象。 1.5 采用转速电流双闭环的理由同开环控制系统相比,闭环控制具有一系列优点。在反馈控制系统中,不管出于什么原因(外部扰动或系统内部变化),只要被控制量偏离规定值,就会产生相应的控制作用去消除偏差。因此,它具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性。由于闭环系统的这些优点因此选用闭环系统。单闭环速度反馈调速系统,采用PI控制器
24、时,可以保证系统稳态速度误差为零。但是如果对系统的动态性能要求较高,如果要求快速起制动,突加负载动态速降小等,单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照要求来控制动态过程的电流或转矩。另外,单闭环调速系统的动态抗干扰性较差,当电网电压波动时,必须待转速发生变化后,调节作用才能产生,因此动态误差较大。在要求较高的调速系统中,一般有两个基本要求:一是能够快速启动制动;二是能够快速克服负载、电网等干扰。通过分析发现,如果要求快速起动,必须使直流电动机在起动过程中输出最大的恒定允许电磁转矩,即最大的恒定允许电枢电流,当电枢电流保持最大允许值时,电动机以恒加速度升速至给定转速,然后
25、电枢电流立即降至负载电流值。如果要求快速克服电网的干扰,必须对电枢电流进行调节。以上两点都涉及电枢电流的控制,所以自然考虑到将电枢电流也作为被控量,组成转速、电流双闭环调速系统。 第2章 PWM控制直流调速系统主电路设计2.1 主电路结构设计2.1.1 PWM变换器介绍脉宽调速系统的主要电路采用脉宽调制式变换器,简称PWM变换器。PWM变换器有不可逆和可逆两类,可逆变换器又有双极式、单极式和受限单极式等多种电路。下面分别对各种形式的PWM变换器做一下简单的介绍和分析。不可逆PWM变换器分为无制动作用和有制动作用两种。图2-1(a)所示为无制动作用的简单不可逆PWM变换器主电路原理图,其开关器件
26、采用全控型的电力电子器件。电源电压一般由交流电网经不可控整流电路提供。电容C的作用是滤波,二极管VD在电力晶体管VT关断时为电动机电枢回路提供释放电储能的续流回路。图2-1 简单的不可逆PWM变换器电路(a)原理图 (b)电压和电流波型电力晶体管VT的基极由频率为f,其脉冲宽度可调的脉冲电压驱动。在一个开关周期T内,当时,为正,VT饱和导通,电源电压通过VT加到电动机电枢两端;当时,为负,VT截止,电枢失去电源,经二极管VD续流。电动机电枢两端的平均电压为 式中,PWM电压的占空比,又称负载电压系数。的变化范围在01之间,改变,即可以实现对电动机转速的调节。 图2-1(b)绘出了稳态时电动机电
27、枢的脉冲端电压、平均电压和电枢电流的波型。由图可见,电流是脉动的,其平均值等于负载电流(负载转矩, 直流电动机在额定磁通下的转矩电流比)。由于VT在一个周期内具有开关两种状态,电路电压平衡方程式也分为两阶段,即在期间 在期间 式中,R,L电动机电枢回路的总电阻和总电感;E电动机的反电动势。PWM调速系统的开关频率都较高,至少是14kHz,因此电流的脉动幅值不会很大,再影响到转速n和反电动势E的波动就更小,在分析时可以忽略不计,视n和E为恒值。这种简单不可逆PWM电路中电动机的电枢电流不能反向,因此系统没有制动作用,只能做单向限运行,这种电路又称为“受限式”不可逆PWM电路。这种PWM调速系统,空载或轻载下可能出现电流断续现象,系统的静、动态性能均差。图2-2(a)所示为具有制动作用的不可逆PWM变换电路,该电路设置了两个电力晶体管VT1和VT2,形成两者交替开关的电路,提供了反向电流的通路。这种电路组成的PWM调速系统可在第I、II两个象限中运行。VT1和VT2的基极驱动信号电压大小相等,极性相反,即。当电动机工作在电动状