《几何图形中的函数问题模块第四讲定义域的求法与作用.doc》由会员分享,可在线阅读,更多相关《几何图形中的函数问题模块第四讲定义域的求法与作用.doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 全日制课程初三教案模块几何图形中的函数问题第四讲定义域的求法与作用教学内容概要: 一般来说,通过研究几何中的动点与定点,把握变量之间的关系来列函数关系式是动态几何问题的重点与难点,而学生很少重视定义域问题。其实,从定义域范围入手,也是解决动态几何问题的方法之一,并且能保证解答的全面性。本讲从定义域入手,分别讨论了由动点运动范围产生的定义域、由几何知识产生的定义域以及它们的综合性内容产生的定义域等问题的解法。教学目标: 1、掌握从动点运动范围入手求定义域的方法。 2、掌握从几何知识本身入手求定义域的方法。 3、掌握从动点运动范围和几何知识本身入手综合性地求定义域的方法。 重难点: 1、对每个动
2、点运动范围分析的全面性,保证定义域范围不多也不少。 2、如何利用几何知识来讨论定义域的取值范围。 第一部分 知识要点1、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义,列出关于自变量的不等式或不等式组,解此不等式(组),得出原函数的定义域;2、极端法 根据条件动点运动范围,将动点取在范围两端,算出此时自变量的值,再根据题目条件,取这时自变量的值的中间或两端。3、值域法 根据解析式中因变量的取值范围,通过求解不等式(组)求定义域。4、图形性质法 从图形本身的定义或性质出发确定自变量的取值范围,如三角形的基本性质等。 第二部分 例题经典例1:如图1,在ABC中,C=90,AC=6,
3、BC=8,M是BC的中点,P为AB上的一个动点,(不与A、B重合),并作MPD=90,PD交线段BC于点D。设BP=x,BPM的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围。图1 图2 图3 图4解:如图1至图4,当点P从点B运动到点A时,当时,如图1所示,当时,如图2和图3所示,点D不在线段BC上运动,当时,如图4所示,可见,而自变量x的取值范围是或。【点评】本题考查的是动点问题引起自变量范围发生变化的问题,例1中,因动点D在线段BC上运动,所以动点P在线段AB上的运动范围不能全部涉及,可通过画图发现问题。例2:如图5,已知A、B是线段MN上的两点,MN=4,MA=1,MB1,
4、以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC,设AB=x,ABC的面积为y,求y与x的函数关系式,并写出自变量x的取值范围。 图5 图6解:如图6,MA=AC=1,MN=4,NB=BC=3x,过点C作AB的垂线,垂足是D,由勾股定理得,在ABC中,由两边之和大于第三边,两边之差小于第三边得,解得,自变量x的取值范围是;【点评】例2与例1在求定义域的方法上很不同,例1是借助动点运动范围,而例2是根据三角形边长定理列不等式组求解。例3:如图7,已知圆O中,点P是半圆AB上一动点,C是AB延长线上一点,PC=PA。(1)已知BC=OA,求证:PC是圆O的切
5、线;(2)设AB=8,AP=x,当直线PC与圆O相交时,求x的取值范围。 图7 图8解:(1)证明:联结OP、PB,OP=OB=BC,OPB=OBP,C=BPC,OPB+OBP+C+BPC=180,OPB+BPC=90,OPPC,又点P在圆O上,PC为O的切线;(2)如图8,设半圆AB的中点为M,联结AM、OM,在RtOAM中,由(1)知,当PC与圆O相切时,直线PC与圆O相交时,x的取值范围是或。【点评】本题重点研究当直线PC与圆O相交时x的取值范围,解决这个问题,要从点P的运动范围和直线PC与圆O的位置关系两方面出发。通过例1到例3,我们发现考虑自变量的取值范围,主要从动点运动范围和图形本
6、身的性质等综合考虑。例4:如图9,在梯形ABCD中,AD/BC,AB=8,BC=14,B=90,C=45,点E、F分别在边AB、CD上,EF/AD,点P与AD在直线EF的异侧,EPF=90,PE=PF,射线EP、FP与边BC分别相交于点M、N,设AE=x,MN=y,求y与x的函数关系式,并写出自变量x的取值范围。图9解:如图9,由题意知在RtBEM中,BE=BM=8x,又,在RtOFCN中,FN=FC,CN=162x,MN=BM+NCBC=(8x)+(162x)14=103x,即y=103x;当点N与点B重合时,BE=EF=6+x,AB=AE+BE=6+x+x=8,解得x=1,当点N与点M、点
7、P都重合时,解得,自变量x的取值范围是且;【点评】本题定义域受多个动点限制,包括点P、N、M等,因此要通过作图发现这三个动点的运动范围及变化规律,再利用三角比和相似比求解,解题过程相对麻烦。例5:如图10,在矩形ABCD中,对角线AC=10厘米,点B到AC的距离为4厘米,E、F是对角线AC上的两个动点,它们分别从点A、点C同时出发,沿对角线以1厘米/秒的相同速度运动,过点E作交折线ADDC于点H,过点F作交折线CDDA于点G,连接HG。设HE、EF、FC、GH围成的图形面积为S,若点F的运动时间为t秒,求S与t之间的函数关系式及自变量t的取值范围。 图10 图11 图12 图13解:如图10,
8、当点H在AD上,点G在DC上时,AE=CF=t,EF=102t,在RtAEH中,EH=2t,在RtGFC中,;如图11,当点H在DC上,点G也在DC上时,AE=CF=t,EF=102t,在RtCEH中,CE=10t,在RtGFC中,;如图12,当点H在DC上,点G也在DC上时,AE=CF=t,EF=2t10,在RtCEH中,CE=10t,在RtGFC中,;如图13,当点H在DC上,点G在DA上时,AE=CF=t,EF=2t10,在RtCEH中,CE=10t,在RtGFC中,AF=10t,;【点评】本题是双动点问题,由于两个动点同时运动,且运动范围不同,所以要分多种情况讨论。 第三部分 课堂练习
9、1、如图14,已知ABC为等边三角形,AB=6,点P是AB上的一个动点(与A、B不重合),过点P作AB的垂线与BC相交于点D,以点D为正方形的一个顶点,在ABC内作正方形DEFG,其中D、E在BC上,F在AC上。设BP=x,正方形DEFG的边长为y,写出y关于x的函数解析式及定义域。图14解:在RtBPD中,BP=x,BD=2x,在RtEFC中,EF=y,BC=BD+DE+EC=2x+y+=6,当点G在线段AB上时,解得,当点P在AB中点时,点D与点E重合,无法构成正方形,自变量x的取值范围是;2、如图15,在ABC中,AB=6,BC=4,点D在BC边的延长线上,ADC=BAC,点E在BA边的
10、延长线上,E=DAC。设AC=x,DE=y,求y关于x的函数解析式,并写出定义域;图15解:ABCDBA,BD=9,CD=BDBC=5;CADAED,函数解析式为,根据两边之和大于第三边,两边之和小于第三边,定义域为; 第四部分 课后作业 A卷1、已知在梯形ABCD中,AD/BC,AD=5,AB=DC=2。(1)如图1,若P为AD上一点,满足BPC=A,求AP的长;(2)若P为AD上一点(不与A、D重合),满足,PE交直线BC于点E,交直线DC于Q,设AP=x,CQ=y,求y关于x的函数解析式及函数定义域;第1题图2、在中,D是斜边AB上一点(不与点A、B重合),过点A作,垂足为E,AE交直线
11、BC于点F。设,求y关于x的函数解析式,并写出其定义域; 第2题图3、在矩形ABCD中,AB=4,BC=3,E是AB边上一点,EFCE交AD于点F,过点E作AEH=BEC,交射线FD于点H,交CD延长线于点N。设BE=x,DN=y,求y与x之间的函数关系式,并写出它的定义域。第3题图 B卷1、如图,在梯形ABCD中,AD/BC,ABAD,AB=4,AD=5,CD=5,点E为底边BC上一点,以点E为圆心,BE为半径画圆E交线段DE于点F。设BE=x,DF=y,试建立y关于x的函数关系式,并写出自变量x的取值范围。第1题图2、在等腰梯形ABCD中,AD/BC,AD=3,AB=CD=4,BC=5,B
12、的平分线交DC于点E,交AD的延长线于点F。(1)如图1,若C的平分线交BE于点G,求BG的长;(2)如图2,若点P为BE上动点,以点P为圆心,BP为半径的圆P与线段BC交于点Q,设BP=x,BQ=y,求y关于x的解析式,并写出定义域;(3)若点A在第(2)小题中的P内而点E在P外时,求BP的取值范围。图1 图2第2题图3、已知ABC=90,AB=2,BC=3,AD/BC,点P为线段BD上的动点,点Q在射线AB上,且满足,联结AP,当AD=1.5时,且点Q在线段AB上时,设BQ=x,其中SAPQ表示APQ的面积,SPBC表示PBC的面积,求y与x的函数关系式,并写出自变量x的取值范围。 第3题
13、图 A卷答案1、解:(1)ABPDPC,AP=1或4;(2)当点Q在DC的延长线上时,由(1)得ABPDPQ,;当点Q在线段DC上时,同理,或; 2、解:如图1所示,过点D作DGBC于点G,当点F在线段BC上时,AD=x,BD=5x,在RtBDG中,RtACF RtCGD,此时,如图2所示,当点F在线段CB的延长线上时,AD=x,BD=5x,在RtBDG中,RtACF RtCGD,此时; 第2题辅助线图1 第2题辅助线图23、解:如图所示,过点N作AB的垂线交BA延长线于点G,则AG=DN=y,RtEGNRtEBC,EG=EB,y+4x=x,y=2x4,当点F与点H重合时,EB=EC,x=3,
14、当点N与点D重合时,AE=EB,x=2,自变量x的取值范围是;第3题辅助线图 B卷答案1、解:如图,过点D作DGBC于点G,则DG=AB=4,在RtDEG中,EG=5x,DE=x+y,由勾股定理得,42+(5x)2=(x+y)2,解得,当y=0时,x=4.1,;2、解:(1)如图1,过点B作BHAD交DA的延长线于点H,延长BE、AD交于点F,联结CF,DF=1,梯形ABCD的高等于BH,设BG=GC=x,BCECGE,此时点G为BF中点,四边形BHFC为矩形;第3题辅助线图1 第3题辅助线图2(2)如图2,过点P作PMBC交于点M,BC=5,点Q在线段BC上,当y=5时,;(3)当点E在圆P上时,当点A在圆P上时,如图2,过点P作AB的垂线交于点N,y=4,当时,点A在圆P内,而点E在圆P外。3、解:如图,过点P作PMAB于点M,PNBC于点N,则PM/AD,当点P与点B重合时,点Q从点B开始,当点P与点D重合时,自变量x的取值范围是;第3题辅助线图