微观经济习题集第四章.doc

上传人:wuy****n92 文档编号:53866337 上传时间:2022-10-27 格式:DOC 页数:17 大小:549.01KB
返回 下载 相关 举报
微观经济习题集第四章.doc_第1页
第1页 / 共17页
微观经济习题集第四章.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《微观经济习题集第四章.doc》由会员分享,可在线阅读,更多相关《微观经济习题集第四章.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第四章 生产论一、单项选择题1如果仅劳动是变动投入,以边际产量等于平均产量作为划分生产三阶段的标志,则( )不是第二阶段的特点。边际实物报酬递减平均产量不断下降总产量不断提高投入比例从比较合理到比较不合理资本的平均产量递增2若劳动与资本的投入组合处于投入产出生产函数等产量线的垂直部分,则( )。劳动与资本的边际产量都是负劳动与资本的边际产量都是0劳动的边际产量为0,资本的边际产量为正劳动的边际产量为正,资本的边际产量为0以上说法都不正确3机会成本的经济含义是( )使用一种资源的机会成本是放弃这种资源另一种用途的收入使用一种资源的机会成本是放弃这种资源的其他用途中所能得到的最高收入。使用一种资源

2、的机会成本是将其用于次优用途的收入使用一种资源的机会成本保证这种资源在现用途继续使用面必须支付的费用以上机会成本的含义,只是说法不同4某企业有房屋、设备等固定资产1000万,折旧率6%;银行长期贷款100万,年利率5%;生产工人工资总额120万;管理人员工资10万;原料、材料、动力费用1500万。则其总固定成本为( )万。60 65 75 1000 11005若某个产量的长期平均成本等于短期平均成本,但高于长期边际成本,则可推断( )。规模报酬处于递减阶段 长期平均成本正在下降短期平均成本最小 短期平均成本等于长期边际成本短期边际成本等于长期边际成本 仅、正确6当劳动的(L)总产量下降时。(

3、)APPL是递减的 APPL为零MPPL为零 MPPL为负7当APPL为正但递减时,MPPL是( )递减 负的 零 上述任何一种8下列说法中错误的一种说法是( )只要总产量减少,边际产量一定是负数只要边际产量减少,总产量一定也减少随着某种生产要素投入量的增加,边际产量和平均产量增加到一定程度将趋于下降,其中边际产量的下降一不定式先于平均产量边际产量曲线一定在平均产量曲线的最高点与之相交。9下列说法中正确的是( )生产要素的边际技术替代率递减是规模报酬递减造成的边际收益递减是规模报酬递减造成的规模报酬递减是边际收益递减规律造成的生产要素的边际技术替代率递减是边际收益递减规律造成的10如果某厂商增

4、加一单位劳动使用量能够减少三单位资本,而仍生产同样的产出量,则MRTSLK为( )-1/3 -3 -1 -611对于图所示的等产量曲线,下列说法中错误的是( )1242Q=20Q=10KL规模报酬不变 固定比例生产函数L与K之间完全可以替代 L与K的边际技术替代率零12等产量曲线是指在这条曲线上的各点代表( )为生产同等产量投入要素的各种组合比例是不是变化的为生产同等产量投入要素的价格是不变的不管投入各种要素量如何,产量总是相等的投入要素的各种组合所能生产的产量都是相等的13若厂商总成本为24美元,由等成本曲线AB可知生产要素X和Y的价格分别为( )4美元和3美元 3美元和4美元 8美元和6美

5、元 6美元和8美元14生产200单位产量的最低成本是( )24美元 48美元12美元 36美元15生产200单位产量的最优生产要素组合是( )3单位X和4单位Y4单位X和3单位Y8单位X和6单位Y 6单位X和8单位Y16如果有效地使用32美元,则产量( )小于200单位 大于300单位大于200单位小于300单位 300单位17在生产者均衡点上,( )MRTSLK=PL/PK MPPL/PL=MPPK/PK 等产量曲线与等成本曲线相切 上述都正确18如果规模报酬不变,单位时间里增加了20%的劳动使用量;但保持资本量不变,则产出将( )增加20% 减少20% 减少投入 增加小于20%19如果确定

6、了最优的生产要素组合( )在生产函数已知时可确定一条总成本曲线就可以确定一条总成本曲线在生产要素价格已知时可确定一条总成本曲线在生产函数和生产要素价格已知可以确定总成本曲线上的一个点20当某厂商以最小成本生产出既定产量时,那他( )总收益为零 一定获得最大利润一定未获得最大利润 增加小于20%二、名词解释1生产者2生产函数3生产要素 4固定投入比例生产函数 5柯布道格拉斯生产函数 6生产的短期和长期 7总产量8平均产量9边际产量10边际报酬递减规律 11等产量曲线 12边际技术替代率递减规律 13等成本线 14等斜线 15扩展线 16规模报酬三、判断题1在生产函数中,只要有一种投入不变,便是短

7、期生产函数。2如果劳动的边际产量递减,其平均产量也递减。3如果平均变动成本等于边际成本,则边际产量等于平均产量。4当平均产量最高时,平均成本最低。5当SMC=LMC,并且小于LAC时,LAC曲线处于下降阶段。6拥有范围经济的企业,必定存在规模经济。7等成本曲线平行向外移动表明成本增加了。8规模报酬递减是在下述情况下发生的不按比例连续增加各种生产要素。四、计算题1已知生产函数,假定厂商目前处于短期生产,且K=10。(1)写出在短期生产中该厂商关于劳动的总产量函数、劳动的平均产量函数和劳动的边际产量函数。(2)分别计算当劳动的总产量、劳动的平均产量各自达到最大值时的厂商的劳动投入量。(3)什么时候

8、=?它的值又是多少?2已知生产函数为。求:(1)当产量Q=32时,L与K值分别是多少?(2)如果生产要素的价格分别为,则生产100单位产量时的最小成本是多少?3已知生产函数为(1)(2)(3)(4)求:(1)厂商长期生产的扩展线方程。(2)当时,厂商实现最小成本的要素投入组合。4已知生产函数。判断:(1)在长期生产中,该生产函数的规模报酬属于哪一种类型?(2)在短期生产中,该生产函数是否受边际报酬递减规律的支配?5已知某企业的生产函数为,劳动的价格w=2,资本的价格r=1。求:(1)当成本C=3000时,企业实现最大产量的L、K和Q的均衡值。(2)当产量Q=800时,企业实现最小成本的L、K和

9、C的均衡值。五、论述题1利用图说明厂商在既定成本条件下是如何实现最大产量的最优要素组合的。2利用图说明厂商在既定产量条件下是如何实现最小成本的最优成要素组合的。3为了实现既定成本条件下的最大产量或既定产量条件下的最小成本,如果企业处于或者时,企业应该分别如何调整劳动和资本的投入量,以达到最优的要素组合?为什么?第四章 参考答案一、单项选择题1234567891011121314151617181920二、名词解释1生产者:生产者亦称厂商或企业,它是指能够做出统一的生产决策的单个经济单位。2生产函数:生产函数表示在一定时期内,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最

10、大产量之间的关系。3生产要素:在西方经济学中,生产要素一般被划分为劳动、土地、资本和企业家才能这种类型。劳动指人类在生产过程中提供的体力和智力的总和。土地不仅指土地本身,还包括地上和地下的一切自然资源。资本可以表现为实物形态或货币形态。资本的实物形态又称为资本品或投资品。资本的货币形态通常称为货币资本。企业家才能指企业家组织建立和经营管理企业的才能。4固定投入比例生产函数:也称为里昂惕夫生产函数,指在每一个产量水平上任何一对要素投入量之间的比例都是固定的生产函数。假定生产过程中只使用劳动和资本两种要素,则固定投入比例生产函数的通常形式为:Q=(Minimum)(L/u,K/v)。式中,Q为产量

11、;L和K分别为劳动和资本的投入量;常数u和v分别固定的劳动和资本的生产技术系数,它们分别表示生产单位产品所需要固定的劳动投入量和资本投入量。5柯布道格拉斯生产函数:是由数学家柯布和经济学家道格拉斯于本世纪30年代初一起提出的。其一般形式为:。式中,Q为产量,L和K分别为劳动和资本投入量;A、和和为三个参数,。当时,和分别表示劳动和资本在生产过程中的相对重要性,为劳动所得在总产量中所占的份额,为资本所得在总产量中所点的份额。6生产的短期和长期:短期指生产者来不及调整全部生产要素的数量,至少有一种生产要素是固定不变的时间周期。长期指生产者可以调整全部生产要素的时间周期。7总产量:是指与一定的可变要

12、素的投入量相对应的最大产量。8平均产量:是总产量与所使用的可变要素的投入量之比。9边际产量:是增加一单位可变要素劳动投入量所增加的产量。10边际报酬递减规律:在技术水平不变的条件下,在连续先是地把某一种可变生产要素增加到其他一种或几种数量不变的生产要素上去的过程中,当这种可变生产要素的投入量小于某一特定值,增加该要素投入所带来的边际产量是递增的;当这种可变要素的投入量连续增加并超过这个特定值时,增加该要素投入所带来的边际产量是递减的。这就是边际报酬递减规律。它是甜生产的一条基本规律。11等产量曲线:是在技术水平不变的条件下生产同一产量的两种生产要素投入量的所有不同组合的轨迹。以常数Q0表示既定

13、的产量水平,则与等产量曲线相对应的生产函数为:Q=f(L,K)=Q0。12边际技术替代率递减规律:在维持产量不变的前提下,当一种生产要素的投入量不断增加时,第一单位的这种生产要素所能替代的另一种生产要素的数量是递减的。这一现象被称为边际技术替代率递减规律。13等成本线:是在既定的成本和既定生产要素价格条件下生产者可以购买到的两种生产要素的各种不同数量组合的轨迹。14等斜线:是一组等产量曲线中两要素的边际技术替代率相等的点的轨迹。15扩展线:在生产要素的价格、生产技术和其他条件不变时,如果企业改变成本,等成本线就会发生平移,如果企业改变产量,等产量曲线就会发生平移。这些不同的等产量曲线将与不同的

14、等成本线相切,形成一系列不同的生产均衡点,这些生产均衡点的轨迹就是扩展线。16规模报酬:规模报酬变化是指在其他条件不变的情况下,企业内部各种生产要素按相同比例变化时所带来的产量变化。企业的规律报酬变化可以分规模报酬递增、规模报酬不变和规律报酬递减三种情况。三、判断题1正确。2错误。应该是不确定,因为边际产量的下降一定先于平均产量。3正确。4错误。当平均产量最高时,平均变动最低。5正确。6错误。大型企业往往同时具有范围经济和规模经济,但两者并不必然联系。7正确。8错误。规模报酬递减是在下述情况下发生的按比例连续增加各种生产要素。四、计算题1解答:(1)当生产函数,且K=10,可得到短期生产函数为

15、:于是,根据总产量、平均产量和边际产量的定义,有以下函数:劳动的总产量函数劳动的平均产量函数劳动的边际产量函数(2)关于总产量的最大值:令,即解得L=20且所以,当劳动投入量L=20时,劳动的总产量达极大值。关于平均产量的最大值:令,即解得L=10(负值舍去)且所以,当劳动投入量L=10时,劳动的平均产量达极大值。关于边际产量的最大值:由劳动的边际产量函数可知,边际产量曲线是一条斜率为负的直线。考虑到劳动投入量总是非负的,所以,当劳动投入量L=0时,劳动的边际产量达极大值。(3)当劳动的平均产量达到最大值时,一定有=。由(2)已知,当L=10时,劳动的平均产量达最大值,即相应的最大值为:的最大

16、值=以L=10代入劳动的边际产量函数=20-L,得。很显然,当=10时,一定达到其自身的极大值,此时劳动投入量为L=10。2解答:(1)生产函数表示该函数是一个固定投入比例的生产函数,所以,厂商进行生产时,总有Q=L=4K。因为已知产量Q=32,所以,相应地有L=32,K=8。(2)由Q=L=4K,且Q=100,可得:L=100,K=25又因为,所以有:即生产100单位产量的最小成本为325。3解答:(1)(a)关于生产函数由最优要素组合的均衡条件,可得:整理得:即厂商长期生产的扩展线方程为:(b)关于生产函数。由最优要素组合的均衡条件,可得:整理得:即厂商长期生产的扩展线方程为:(b)关于生

17、产函数。由最优要素组合的均衡条件,可得:整理得:即厂商长期生产的扩展线方程为:(c)关于生产函数由最优要素组合的均衡条件,可得:即厂商长期生产的扩展线方程为:(d)关于生产函数由于该函数是固定投入比例的生产函数,即厂商的生产总有3L=K,所以,直接可以得到厂商长期生产的扩展线方程为K=3L。(2)(a)关于生产函数。当,Q=1000时,由其扩展线方程得:K=2L代入生产函数得:解得(b)关于生产函数。当,Q=1000时,由其扩展线方程得:K=L代入生产函数,得:(c)关于生产函数。当,Q=1000时,由其扩展线方程得:代入生产函数,得:(d)关于生产函数。当,Q=1000时,将其扩展线方程K=

18、3L,代入生产函数,得:K=3L=1000于是,有K=1000,4解答:(1)因为,于是有:所以,生产函数,有:且这表明:在短期资本投入量不变的前提下,随着一种可变要素劳动投入量的增加,劳动的边际产量是递减的。相类似地,假定在短期生产中,劳动投入量不变,以表示;而资本投入量可变,以K表示。对于生产函数,有:,且这表明:在短期劳动投入量不变的前提下,随着一种可变要素资本投入量的增加,资本的边际量是递减的。以上的推导过程表明该生产函数在短期生产中受边际报酬递减规律的支配。5解答:(1)根据企业实现给定成本条件产量最大化的均衡条件:其中于是有整理得即K=L再以K=L代入约束条件,有:2L+L=300

19、0解得且有以代入生产函数,求得最大的产量本题的计算结果表示:在成本C=3000时,厂商以,进行生产所达到的最大产量为。此外,本题也可以用以下的拉格朗日函数法来求解。将拉格朗日函数分别对、求偏导,得极值的一阶条件:由(1)式、(2)式可得:即K=L以K=L代入约束条件即(3)式,可得:3000-2L-L=0解得且有以代入目标函数即生产函数,求得最大的产量在此略去关于极大值的二阶条件的讨论。(2)根据厂商实现给定产量条件下成本最小化的均衡条件:其中于是有整理得即K=L再以K=L代入约束条件,有:解得且有以代入成本方程,求得最小成本:本题的计算结果表示:在Q=800时,厂商以,进行生产的最小成本为。

20、此外,本题也可以用以下的拉格朗日函数法来求解。将拉格朗日函数分别对、求偏导,得极值的一阶条件:由(1)式、(2)式可得:即K=L以K=L代入约束条件即(3)式,有:解得且有以代入目标函数即成本等式,得最小的成本:在此略去关于极小值的二阶条件的讨论。五、论述题1解答:以图120为例,要点如下:(1)由于本题的约束条件是既定的成本,所以,在图120中,只有一条等成本线AB;此外,有三条等产量曲线、和以供分析,并从中找出相应的最大产量水平。(2)在约束条件即等成本线AB给定的条件下,先看等产量曲线,该曲线处于AB线以外,与AB线既无交点又无切点,所以,等产量曲线表示的产量过大,既定的等成本线AB不可

21、能实现的产量。再看等产量曲线,它与既定的AB线交于、两点。在这种情况下,厂商只要从点出发,沿着AB线往下向E点靠拢,或者从点出发,沿着AB线往上向E点靠拢,就都可以在成本不变的条件下,通过对生产要素投入量的调整,不断地增加产量,最后在等成本线AB与等产量曲线的相切处E点,实现最大的产量。由此可得,厂商实现既定成本条件下产量最大化的均衡条件是,且整理可得。KAK*OL*EBLQ1Q2Q3ab图1202解答:以图121为例,要点如下:(1)由于本题的约束条件是既定的产量,所以,在图121中,只有一条等产量曲线;此外,有三条等成本线AB、和以供分析,并从中找出相应的最小成本。(2)在约束条件即等产量

22、曲线给定的条件下,先看等成本线AB,该线处于等产量曲线以下,与等产量曲线既无交点又无切点,所以,等成本线AB所代表的成本过小,它不可能生产既定产量。再看等成本线,它与既定的等产量曲线交于、两点。在这种情况下,厂商只要从点出发,沿着等产量曲线往下向E点靠拢,或者,从点出发,沿着等产量曲线往上向E点靠拢,就都可以在既定的产量条件下,通过对生产要素投入量的调整,不断地降低成本,最后在等产量曲线与等成本线的相切处E点,实现最小的成本。由此可得,厂商实现既定产量条件下成本最小化的均衡条件是,且整理可得。KBK*OL*EBLab图121AABB3解答:要点如下:(1)研究给定条件下的产量最大化或成本最小化

23、的分析工具是等产量曲线和等成本线。等产量曲线的斜率的绝对值可以用两要素的边际技术替代率来表示,等成本线的斜率为,即两要素的相对价格。在几何图形的分析中,生产者追求既定约束条件下的产量最大化或成本最小化的均衡点都发生在等产量曲线和等成本线的相切点上,于是有生产者最优生产要素组合的均衡条件为:。其经济含义为:在厂商的生产要素最优组合的均衡点上,厂商在生产中的两要素的边际技术替代比率(即),即用一单位的劳动所替代的资本的数量,应该恰好等于该厂商能够在市场用一单位的劳动去交换资本的数量(即)。(2)在时,厂商对生产要素投入组合的调整,可能用图119来说明。先看表示给定成本条件下的产量最大化的(a)图。

24、在(a)图中的点上有等产量曲线的斜率的绝对值大于等成本线斜率的绝对值,即,且点的要素投入组合为(),相应的产量由等产量曲线表示。但在成本给定(即等成本线AB给定)的条件下,点的要素投入组合生产的产量并不是最大的。厂商应该从点出发,沿着给定的表示约束条件的等成本线AB向均衡向E靠拢,比如说,由点运动到点,则厂商就可以在不改变成本的条件下,将要素投入组合调整到(),从而达到更大的产量水平,此产量水平用过点的等产量曲线(虚线)来表示。很清楚,只要厂商由点出发,沿着既定的等成本线AB,按箭头所示方向往下向均衡点E靠拢,最后就可以在等产量曲线和等成本线AB的相切点E处实现最大的产量。此时,在均衡点E上,

25、有。KAK*OL*EBLQ1Q2Q3ab(a)给定成本条件下的产量最大化L1L2K1K2abKAK*OL*EBLab(b)给定成本条件下的产量最小化L1L2K1K2abAABBQ图119相类似地,再看表示给定产量条件下成本最小化的(b)图。在(b)图中的点上同样也有,在点处的要素投入组合为(),相应的成本由等成本线AB表示。但在产量给定(即等产量曲线Q给定)的条件下,点要素投入组合所导致的成本并不是最小的。厂商同样应该从点出发,沿着给定的表示产量约束条件的等产量曲线Q向均衡点E靠拢,比如说,由点运动到点,则厂商就可以在生产产量Q的条件下,将要素投入组合调整到(),从而达到更小的成本,此成本便是

26、过点的等成本线所表示的。很清楚,只要厂商由点出发,沿着既定的等产量曲线Q按箭头方向往下向均衡点E靠拢,最后就可以在等产量曲线Q和等成本线相切点实现给定产量条件下的最小值成本。此时,在均衡点上,有。(3)至于的情况,在图中分别是图(a)中的点和图(b)中的点。与以上(2)中的分析道理相类似,在图(a)中的点时,厂商由点出发,沿着既定的等成本线AB往上向均衡点E点靠拢,比如运动到点,就可以在成本不变的前提下,通过对要素投入量的调整而不断地提高产量,如达到等产量曲线的产量,最后在均衡点E实现最大的产量。同样,在图(b)的点时,厂商从点出发,沿既定的等产量曲线Q往上向均衡点E靠拢,比如运动到点,就可以在产量不变的前提下,通过对要素投入量的调整而不断地降低成本,如达到等成本线的成本,最后在均衡点E处实现最小的成本。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 习题库

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁