《数控特种加工技术在当今制造业中的发展方向(共30页).doc》由会员分享,可在线阅读,更多相关《数控特种加工技术在当今制造业中的发展方向(共30页).doc(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上摘 要现阶段,先进制造技术不断发展,作为先进制造技术中的重要的一部分,特种加工对制造业的作用日益凸显,对什么是特种加工、特种加工的特点、种类以及发展趋势等作了描述。阐述了特种加工在现代社会发展过程中的重要地位,大力发展特种加工的必要性。关键词:特种加工技术,特点,变革,发展趋势。ABSTRACTAt this stage, development of advanced manufacturing technology, as an important part of advanced manufacturing technology, special process
2、ing on an increasingly prominent role in the manufacturing sector, on four lines of special processing, special processing characteristics, types, and the trend described. Elaborated on the special position of processing in the development of modern society, vigorously develop the need for special p
3、rocessing.Keywords: non-traditional machining technology, features, changes and trends.目 录第一章 特种加工1 1.1 概述1 1.2 特点1 1.3 特种加工的分类3 1.4 特种加工存在的问题5第二章 电火花加工6 2.1 电火花加工6 2.2 工作原理6第三章 超声波加工7 3.1 定义7 3.2 基本原理和特点7 3.3 超声加工在当今制造业的应用9第四章 激光加工12 4.1 常规激光加工技术的发展与应用12 4.2 激光领域加工方法的新进展13 4.3 新型工业激光器15第五章 特种加工的发展1
4、7 5.1 激光加工技术17 5.2 电子束加工技术17 5.3 离子束及等离子体加工技术18 5.4 电加工技术18第六章 行业概况和现状21 6.1 我国生产的特种加工机床主要种类21 6.2 特种加工方法的内容22 6.3 特种加工的发展趋势22第七章 特种加工技术发展现状与展望24结论25参考文献26致谢27专心-专注-专业第一章 特种加工1.1 概况特种加工是20世纪40年代发展起来的,由于材料科学、高新技术的发展和激烈的市场竞争、发展尖端国防及科学研究的急需,不仅新产品更新换代日益加快,而且产品要求具有很高的强度重量比和性能价格比,并正朝着高速度、高精度、高可靠性、耐腐蚀、高温高压
5、、大功率、尺寸大小两极分化的方向发展。为此,各种新材料、新结构、形状复杂的精密机械零件大量涌现,对机械制造业提出了一系列迫切需要解决的新问题。例如, 各种难切削材料的加工;各种结构形状复杂、尺寸或微小或特大、精密零件的加工;薄壁、弹性元件等刚度、特殊零件的加工等。 对此,采用传统加工方法十分困难,甚至无法加工。于是,人们一方面通过研究高效加工的刀具和刀具材料、自动优化切削参数、提高刀具可靠性和在线刀具监控系统、开发新型切削液、研制新型自动机床等途径,进一步改善切削状态,提高切削加工水平,并解决了一些问题;另一方面,则冲破传统加工方法的束缚,不断地探索、寻求新的加工方法,于是一种本质上区别于传统
6、加工的特种加工便应运而生,并不断获得发展。后来,由于新颖制造技术的进一步发展,人们就从广义上来定义特种加工,即 将电、磁、声、光、化学等能量或其组合施加在工件的被加工部位上,从而实现材料被去除、变形、改变性能或被镀覆等的非传统加工方法统称为特种加工。1.2特点 1、不用机械能 ,与加工对象的机械性能无关,有些加工方法,如激光加工、电火花加工、等离子弧加工、电化学加工等,是利用热能、化学能、电化学能等,这些加工方法与工件的硬度强度等机械性能无关,故可加工各种硬、软、脆、热敏、耐腐蚀、高熔点、高强度、特殊性能的金属和非金属材料。 2、非接触加工, 不一定需要工具,有的虽使用工具,但与工件不接触,因
7、此,工件不承受大的作用力,工具硬度可低于工件硬度,故使刚性极低元件及弹性元件得以加工。 3、微细加工 ,工件表面质量高,有些特种加工,如超声、电化学、水喷射、磨料流等,加工余量都是微细进行,故不仅可加工尺寸微小的孔或狭缝,还能获得高精度、极低粗糙度的加工表面。 4、不存在加工中的机械应变或大面积的热应变, 可获得较低的表面粗糙度,其热应力、残余应力、冷作硬化等均比较小,尺寸稳定性好。 5、两种或两种以上的不同类型的能量可相互组合形成新的复合加工 ,其综合加工效果明显,且便于推广使用。 6、特种加工对简化加工工艺、变革新产品的设计及零件结构工艺性等产生积极的影响。 7 特种加工技术是先进制造技术
8、的重要组成部分 随着特种加工技术的发展,一方面计算机技术、信息技术、自动化技术等在特种加工中已获得广泛应用,逐步实现了加工工艺及加工过程的系统化集成;另一方面,特种加工能充分体现学科的综合性,学科(声、光、电、热、化学等)和专业之间不断渗透、交叉、融合,因此,特种加工技术本身同样趋于系统化集成的发展方向。这二方面说明,特种加工技术已成为先进制造技术的重要组成部分。一些发达国家也非常重视特种加工技术的发展,如日本把特种加工技术和数控技术作为跨世纪发展先进制造技术的二大支柱。特种加工技术已成为衡量一个国家先进制造技术水平和能力的重要标志。这是特点之一。 8、特种加工具有独特的加工机理 特种加工不是
9、依靠刀具、磨具等进行加工,而主要依靠电能、热能、光能、声能、磁能、化学能及液动力能等进行加工,其加工机理与金属切削机床完全不同。能量的发生与转换、使能过程的控制是特种加工高新技术的重要部分。这是特点之二。 9、 增材加工是特种加工的重要发展方向 金属切削机床、特种加工机床一大部分是减材加工。我国从二十世纪八十年代末发展起来的快速成形(RP)加工技术是属于特种加工技术的一种增材加工的新领域。它利用分层制造原理(离散堆积)及分层处理软件,理论上可以制造任意复杂形状的零、部件,能适应高科技、个性化、小批量生产的需要,增材加工的RP加工技术已成为特种加工的特点之三。 10、 特种加工可以进行二种或二种
10、以上能量的复合加工 一般来说,“组合加工”是指在一台机床上二种不同加工形式(能量)在加工过程中交替使用的加工方式;“复合加工”是指在一台机床上实现二种或二种以上能量(形式)在加工过程中同时作用的加工方式,例如,电能和声能、化学能和电能、光能和化学能、化学能和电能及机械能等复合,以获得高效或精密加工的效果,这是特点之四。 11、特种加工技术应用领域的重要性和特殊性 特种加工适用于各种高硬度、高强度、高韧性、高脆性、微细等金属和非金属材料的加工,以及各种新型、特殊材料的加工,在航空航天、军工、汽车、模具、冶金、机械、电子、轻纺、交通等工业中解决了大量传统机械加工难于解决的关键、特殊的加工难题。所以
11、在国民经济的众多关键制造工业中发挥着极其重要的不可替代的作用。例如,在航空航天工业中各类复杂深小孔加工、发动机蜂窝环、叶片、整体叶轮加工、特殊材料的切割加工、钛合金加工等等。在军事工业中,例如核武器及高新技术武器几乎全是特殊材料和高新技术材料,各种零件的成形加工、各种孔加工、精密薄材加工等特种加工发挥着特殊重要的作用。这是特点之五。 12、 特种加工机床产量世界第一 由于特种加工机床应用领域的广泛性和重要性,在我国已形成由生产企业、大专院校、研究院所200多个单位组成的特种加工机床行业,其电火花加工机床的年产量就约达30000台之多,其产量为世界第一。是名副其实的生产大国(但不是生产强国)这是
12、特点之六。1.3 特种加工的分类 特种加工机床范围较广,有几十个门类。包括:电火花加工(EDM)、电化学加工(ECM)、电解磨削加工(ECG)、化学加工(CHM)、电弧加工(EAM)、激光加工(LBM)、超声加工(USM)、离子束加工(IBM)、电子束加工(EBM)、等离子弧加工(PAM)、快速成型加工(RPM)、磨料射流加工(AJM)等等。特种加工机床原属金属切削加工机床范畴,但由于特种加工机床与金属切削加工机床机理完全不同,机床功能部件的性能不同,以及它在国民经济中重要地位和作用等原因,2003年国家标准化管理委员会明确为与金切机床并行的独立的机床体系。与其他先进制造技术一样,特种加工正在
13、研究、开发推广和应用之中,具有很好的发展潜力和应用前景。依据加工能量的来源及作用形式列举各种常用的特种加工方法。 加工方法 主要能量形式 作用形式 电火花加工 电、热能 融化、气化 电火花线切割加工 电、热能 熔化、气化 电化学加工 电解加工 电化学能 离子转移 电铸加工 电化学能 离子转移 涂镀加工 电化学能 离子转移 高能束加工 激光束加工 光、热能 熔化、气化 电子束加工 电、热能 熔化、气化 离子束加工 电、机械能 切蚀 等离子弧加工 电、热能 熔化、气化 物料切蚀加工 超声加工 声、机械能 切蚀 磨料流加工 机械能 切蚀 液体喷射加工 机械能 切蚀 化学加工 化学铣切加工 化学能 腐
14、蚀 照相制版加工 化学、光能 腐蚀 光刻加工 光、化学能 光化学、腐蚀 光电成形电镀 光、化学能 光化学、腐蚀 刻蚀加工 化学能 腐蚀 粘接 化学能 化学键 爆炸加工 化学能、机械能 爆炸 成形加工 粉末冶金 热能、机械能 热压成形 超塑成形 机械能 超塑性 快速成形 热能、机械能 热熔化成形 复合加工 电化学电弧加工 电化学能 熔化、气化腐蚀 电解电火花机械磨削 电、热能 离子转移、熔化、切削 电化学腐蚀加工 电化学能、热能 熔化、气化腐蚀 超声放电加工 声、热、电能 熔化、切蚀 复合电解加工 电化学、机械能 切蚀 复合切削加工 机械、声、磁能 切削 电火花加工是通过工件和工具电极间的放电而
15、有控制地去除工件材料,以及使材料变形、改变性能或被镀覆的特种加工。 其中成形加工适用于各种孔、槽模具,还可刻字、表面强化、涂覆等;切割加工适用于各种冲模、粉末冶金模及工件,各种样板、磁钢及硅钢片的冲片,钼、钨、半导体或贵重金属。电化学加工是通过电化学反应去除工件材料或在其上镀覆金属材料等的特种加工。 其中电解加工适用于深孔、型孔、型腔、型面、倒角去毛刺、抛光等。电铸加工适用于形状复杂、精度高的空心零件,如波导管;注塑用的模具、薄壁零件;复制精密的表面轮廓;表面粗糙度样板、反光镜、表盘等零件。涂覆加工可针对表面磨损、划伤、锈蚀的零件进行涂覆以恢复尺寸;对尺寸超差产品进行涂覆补救。对大型、复杂、小
16、批工件表面的局部镀防腐层、耐腐层,以改善表面性能。 高能束加工是利用能量密度很高的激光束、电子束或离子束等去除工件材料的特种加工方法的总称。 其中激光束加工主要应用有打孔、切割、焊接、金属表面的激光强化、微调和存储等。电子束加工有热型和非热型两种,热型加工是利用电子束将材料的局部加热至熔化或气化点进行加工的,适合打孔、切割槽缝、焊接及其他深结构的微细加工;非热型加工是利用电子束的化学效应进行刻蚀、大面积薄层等微细加工等。离子束加工主要应用于微细加工、溅射加工和注入加工。等离子弧加工适用于各种金属材料的切割、焊接、热处理,还可制造高纯度氧化铝、氧化硅和工件表面强化,还可进行等离子弧堆焊及喷涂。
17、超声加工是利用超声振动的工具在有磨料的液体介质中或干磨料中,产生磨料的冲击、抛光、液压冲击及由此产生的气蚀作用来去除材料,以及超声振动使工件相互结合的加工方法。 其适用于成形加工、切割加工、焊接加工和超声清洗。 液体喷射加工是利用水或水中加添加剂的液体,经水泵及增压器产生高速液体束流,喷射到工件表面,从而达到去除材料的目的。 可加工薄、软的金属及非金属材料,去除腔体零件内部毛刺、使金属表面产生塑性变形。磨料喷射加工适用于去毛刺加工、表面清理、切割加工、雕刻、落料及打孔等。 化学加工使利用化学溶液与金属产生化学反应,使金属腐蚀溶解,改变工件形状、尺寸的加工方法。 用于去除材料表层,以减重;有选择
18、地加工较浅或较深的空腔及凹槽;对板材、片材、成形零件及挤压成形零件进行锥孔加工。复合加工是指同时在加工部位上组合两种或两种以上的不同类型能量去除工件材料的特种加工。 1.4 特种加工存在的问题 虽然特种加工已解决了传统切削加工难以加工的许多问题,在提高产品质量、生产效率和经济效益上显示出很大的优越性,但目前它还存在不少优待解决的问题。(1).不少特种加工的机理(如超声、激光等加工)还不十分清楚,其工艺参数选择、加工过程的进一步提高。(2.)有些特种加工(如电化学加工)加工过程中的废渣、废气若排房不当,会产生环境污染,影响工人健康。(3).有些特种加工(如快速成形、等离子弧加工等)的加工精度及生
19、产率有待提高。(4.)有些特种加工(如激光加工)所需设备投资大、使用维修费高,亦有待进一步解决。 第二章 电火花加工特种加工机床是利用电能、电化学能、光能及声能等进行加工的方法。2.1 电火花加工电火花加工是直接利用电能对零件进行加工的一种方法。电火花加工设备应由以下部分组成:脉冲电源、间隙自动调节器、机床本体、工作液及其循环过滤系统。间隙自动调节器自动调节极间距离,使工具电极的进给速度与电蚀速度相适应。火花放电必须在绝缘液体介质中进行。1、 电火花成形加工机床:主要由脉冲电源箱、工作液箱和机床本体组成。其中机床主体由主轴头、工作台、床身和立柱组成。主轴头是电火花成型加工机床的关键部件,它与间
20、隙自动调节装置组成一体。主轴头的性能直接影响电火花成型加工的加工精度和表面质量。2、 电火花切割加工机床:它是利用一根运动的金属丝作为工具电极,在工具电极和工件电极之间通以脉冲电流,使之产生电腐蚀,工件被切割成所需要的形状。3、 电火花加工特点:可以加工任何导电材料,在一定条件下还可以加工半导体材料和非导电材料;加工时无切削力;加工中几乎不受热的影响,可以提高加工后的工件质量;便于实现自动化。电火花是一种自激放电,其特点如下: 电火花放电的两个电极间在放电前具较高的电压,当两电极接近时,其间介质被击穿后,随即发生火花放电。伴随击穿过程,两电极间的电阻急剧变小,两极之间的电压也随之急剧变低。火花
21、通道必须在维持暂短的时间(通常为 10 -7 -10 -3 s)后及时熄灭,才可保持火花放电的“冷极”特性(即通道能量转换的热能来不及传至电极纵深),使通道能量作用于极小范围。通道能量的作用,可使电极局部被腐蚀。 利用火花放电时产生的腐蚀现象对材料进行尺寸加工的方法,叫电火花加工。 电火花加工是在较低的电压范围内,在液体介质中的火花放电。2.2工作原理电火花加工是在液体介质中进行的,机床的自动进给调节装置使工件和工具电极之间保持适当的放电间隙,当工具电极和工件之间施加很强的脉冲电压(达到间隙中介质的击穿电压)时,会击穿介质绝缘强度最低处,如图所示。由于放电区域很小,放电时间极短,所以,能量高度
22、集中,使放电区的温度瞬时高达10000-12000,工件表面和工具电极表面的金属局部熔化、甚至汽化蒸发。局部熔化和汽化的金属在爆炸力的作用下抛入工作液中,并被冷却为金属小颗粒,然后被工作液迅速冲离工作区,从而使工件表面形成一个微小的凹坑。一次放电后,介质的绝缘强度恢复等待下一次放电。如此反复使工件表面不断被蚀除,并在工件上复制出工具电极的形状,从而达到成型加工的目的。 第三章 超声波加工3.1 定义超声加工(USM,Ultrasonic Machining)是利用超声振动的工具在有磨料的液体介质中或干磨料中,产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,以及利用超声振动使工件相
23、互结合的加工方法。 早期的超声加工主要依靠工具作超声频振动,使悬浮液中的磨料获得冲击能量,从而去除工件材料达到加工目的。但加工效率低,并随着加工深度的增加而显著降低。后来,随着新型加工设备及系统的发展和超声加工工艺的不断完善,人们采用从中空工具内部向外抽吸式向内压人磨料悬浮液的超声加工方式,不仅大幅度地提高了生产率,而且扩大了超声加工孔的直径及孔深的范围。 近20多年来,国外采用烧结或镀金刚石的先进工具,既作超声频振动,同时又绕本身轴线以10005000r/min的高速旋转的超声旋转加工,比一般超声波加工具有更高的生产效率和孔加工的深度,同时直线性好、尺寸精度高、工具磨损小,除可加工硬脆材料外
24、,还可加工碳化钢、二氧化钢、二氧化铁和硼环氧复合材料,以及不锈钢与钛合金叠层的材料等。目前,已用于航空、原子能工业,效果良好。 3.2基本原理和特点 (l)超声波的特性 声波是人耳能感受到的一种纵波,其频率范围为1616000Hz。当声波的频率低于16Hz时就叫做次声波, 高于16000Hz则称为超声波。具有如下特性: 1)超声波可在气体、液体和固体介质中传播,其传播速度与频率、波长、介质密度等有关,可用公式表示 C=f (51) 式中 C-超声波传播速度(mS); -波长(m); f-频率(HZ)。 2)超声波在各种介质中传播,其运动轨迹都按余弦函数规律变化,其位移为 xA*cos(*t +
25、 ) (52) 式中 x-质点运动的位移(m); A-振幅(m); -圆频率(radS); t-时间(s); -振动的相位角(rad)。 3)超声波可传递很强的能量,其能量强度可用垂直于波的传播方向单位面积的能量来表示,超声加工中的能量强度高达几百瓦平方厘米,且90作用于工件表面。 4)超声波会产生反射、干涉和共振现象。出现波的叠加作用,使弹性杆中某处质点始终不动,而某处质点的振幅则大大增加,从而获得更大的超声加工能量。这是因为,超声波在同一弹性杆的一端向另一端传播时,在不同介质的介面上会产生一次或多次波的反射,结果在有限长弹性杆,将存在若干个周期相同、振幅相等、传播方向相同或相反的波。于是在
26、弹性杆传播的波,会出现波叠加,致使某处振动始终加强,或某处振动始终减弱,产生波的干涉现象。 5)超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象,强化了加工过程的进行。因超声波通过悬浮磨粒的液体介质时,会使液体介质连续地产生压缩和稀疏区域,由于压力差而形成气体的空腔,并随着稀疏区的扩展而增大,内部压力下降,与此同时,受周围液体压力及磨粒传递的冲击力作用,又使气体空腔压缩而提高压力,于是,转人压缩区状态时,迫使其破裂产生冲击波。由于进行的时间极短,因此,会产生更大的冲击力作用于工件表面,从而加速磨粒的切蚀过程。 (2)超声加工的基本原理 超声加工时,高频电源联接超声换能器(参见图52
27、),由此将电振荡转换为同一频率、垂直于工件表面的超声机械振动,其根幅仅0005001mm,再经变幅杆放大至0050lmm,以驱动工具端面作超声振动。此时,磨料悬浮液(磨料、水或煤油等赃工具的超声振动和一定压力下,高速不停地冲击悬浮液中的磨粒,并作用于加工区,使该处材料变形,直至击碎成微粒和粉末。同时,由于磨料悬浮液的不断搅动,促使磨料高速抛磨工件表面,又由于超声振动产生的空化现象,在工件表面形成液体空腔,促使混合液渗入工件材料的缝隙里,而空腔的瞬时闭合产生强烈的液压冲击,强化了机械抛磨工件材料的作用,并有利于加工区磨料悬浮液的均匀搅拌和加工产物的排除。随着磨料悬浮液不断地循环。磨粒的不断更新。
28、加工产物的不断排除,实现了超声加工的目的。总之,超声加工是磨料悬浮液中的磨粒,在超声振动下的冲击、抛磨和空化现象综合切蚀作用的结果。其中,以磨粒不断冲击为主。由此可见,脆硬的材料,受冲击作用愈容易被破坏,故尤其适于超声加工 (3)超声加工的特点 1)适合加工各种硬脆材料,尤其是玻璃、陶瓷、宝石、石英、锗、硅、石墨等不导电的非金属材料。也可加工淬火钢、硬质合金、不锈钢、钛合金等硬质或耐热导电的金属材料,但加工效率较低。 2)由于去除工件材料主要依靠磨粒瞬时局部的冲击作用,故工件表面的宏观切削力很小,切削应力、切削热更小,不会产生变形及烧伤,表面粗糙度也较低,可达Ra063008um,尺寸精度可达
29、正负003mm,也适于加工薄壁、窄缝、低刚度零件。 3)工具可用较软的材料、做成较复杂的形状,且不需要工具和工件作比较复杂的相对运动,便可加工各种复杂的型腔和型面。一般,超声加工机床的结构比较简单,操作、维修也比较方便。 4)超声加工的面积不够大,而且工具头磨损较大,故生产率较低 3.3超声加工在当今制造业中的应用 超声加工是功率超声技术在制造业应用的一个重要方面;是一种加工如陶瓷、玻璃。石英、宝石、锗、硅甚至金刚石等硬脆性半导体、非导体材料有效而重要的方法。即使是电火花粗加工或半精加工后的淬火钢、硬质合金冲压模、拉丝模、塑料模具等,最终常用超声抛磨、光整加工。 超声加工从50年代开始实用性研
30、究以来,其应用日益广泛。随着科技和材料工业的发展,新技术、新材料将不断涌现,超声加工的应用也会进一步拓宽,发挥更大的作用。目前,。生产上多用于以下几个方面: (l)成形加工 虽然其生产率不如电火花、电解加工,但加工精度及工件表面质量则化于电火花、电解加工。例如,生产上用硬质冶金代替合金工具钢制造技深模、拉丝模等模具,其耐用度可提高80-100倍。采用电火花加工,工件表面常出现微裂纹,影响了模具表面质量和使用寿命。而采用超声加工则无此缺陷,且尺寸精度可控制在0.01-0.02mm之内、内孔锥度可修整至8。 对硅等半导体硬脆材料进行套料等加工,更显示了超声波加工的特色。例如,在直径90mm、厚02
31、5mm的硅片上,可套料加工出176个直径仅为1mm的元件,时间只需15min,合格率高达90-95,加工精度为正负0.02mm。 此外,近年来,超声加工已经排除其通向微细加工领域的障碍。日本东京大学工业科学学院采用超声加工方法,加工出的微小透平胜和玻璃上直径仅9um的微孔。 a) 微细孔 b)型腔 c)异形通孔 d)弯曲孔 e)刻槽 g)套料 h)切圆 i)复杂沟槽 超声加工的应用微小造平腔 玻璃上直径为9um的微孔 (2)切割加工 超声精密切割半导体、铁氧体、石英、宝石、陶瓷、金刚石等硬脆材料,比用金刚石刀具切割具有切片薄、切口窄、精度高、生产率高、经济性好的优点。例如,超声切割高7mm、宽
32、15-20mm的锗晶片,可在35min内切割出厚0.08mm的薄片;超声切割单晶硅片一次可切割10-20片。再如,在陶瓷厚膜集成电路用的元件中,加工8mm、厚06mm的陶瓷片,1min内可加工4片;在4X1mm2的陶瓷元件上,加工O03mm厚的陶瓷片振子, 05-1min以内,可加工18片,尺寸精度可达正负0.02mm。 超声切割加工实例 a)切片 b)多个圆片落料 c)多片圆板落料 d)切割单晶硅片 (3)焊接加工 超声焊接是利用超声频振动作用,去除工件表面的氧化膜,使新的本体表面显露出来,并在两个被焊工件表面分子的高速振动撞击下,摩擦发热。亲和粘接在一起。其不仅可以焊接尼龙、塑料及表面易生
33、成氧化股的铝制品等,还可以在陶瓷等非金属表面挂锡、挂银、涂覆薄层。由于超声焊接不需要外加热和焊剂,焊接热影响区很小,施加压力微小,故可焊接直径或厚度很小的(O015-0.03)不同金属材料,也可焊接塑料薄纤维及不规则形状的硬热塑料。目前,大规模集成电路引线连接等,已广泛采用超声焊接。 (4)超声清洗超声清洗 主要用于几何形状复杂、清洗质量要求高的中、小精密零件,特别是工件上的探小孔、微孔、弯孔、盲孔、沟槽、窄缝等部位的精清洗。采用其他清洗方法,效果差,甚至无法清洗,采用超声清洗则效果好、生产率高。目前,在半导体和集成电路元件、仪表仪器零件、电真空器件、光学零件、精密机械零件、医疗器械、放射性污
34、染等的清洗中应用。 一般认为,超声清洗是由于清洗液(水基清洗剂、氯化烃类溶剂、石油熔剂等应超声波作用下产生空化效应的结果。空化效应产生的强烈冲击波,直接作用到被清洗部位上的污物等,并使之脱落下来;空化作用产生的空化气泡渗透到污物与被清洗部位表面之间,促使污物脱落;在污物被清洗液溶解的情况下,空化效应可加速溶解过程。 超声清洗时,应合理选择工作频率和声压强度,以产生良好的空化效应,提高清洗效果。此外,清洗液的温度不可过高,以防空化效应的减弱,影响清洗效果。(1) 超声波加工原理:同学们应对比电火花加工来学习,以便于区分不同点。(2) 超声波加工机床的组成:超声波加工机床主要包括超声电源(超声发生
35、器)、超声振动系统及加工机床本体三部分。(3) 超声波加工特点:适用于加工各种不同不导电的硬脆材料;由于在加工过程中不需要旋转,因此易于加工出各种复杂形状的型孔、型腔、成型表面等;加工过程受力很小,适于加工薄壁、薄片等不能承受较大机械应力的零件。第四章、激光加工4.1 常规激光加工技术的发展与应用 随着加工技术的创新和进步,目前常规激光加工的技术,如钻孔、切断、表面改性等都 有不同程度的进展。 (1) 钻孔早期激光钻孔采用定点冲击法:即在一个位置上用脉冲激光束不停地加工,直至孔通。这种加工方法,使加工的孔深和孔径均受到限制。高重复频率YAG激光器进入实用阶段后,出现了旋切钻孔法(Trepann
36、ing),即用专用光学旋转头或数控自动生成圆轨迹进行激光套料加工。这不仅消除了孔径限制,且由于有辅助吹气,加工区呈半敞开式,熔融物易排出,故孔表面质量好。对于分布有大量相同规格小孔的零件,特别是回转体,当前又发展了飞行打孔法(Drilling on the fly),即激光对一个孔位加工一个脉冲后,不管孔是否打通,工件都利用光脉冲间隙快速运动(移动或转动)到下一个孔位,如此进行多次循环对同一位置多次冲击,直至完成所有孔的加工。其优点是激光脉冲间隙的时间被用作零件孔的位移,可大大提高加工速度。钻孔速度目前为每秒数10孔,预计可达每秒500孔 (亚毫米孔径)。技术的关键在于激光到达,工件必需运动到
37、位,这对非均布孔来说有很大难度。用CNC闭环控制系统控制,当孔加工速率更高时,为保证圆的孔形,在激光作用时间内,激光束必须与零件同步运动。激光飞行打孔在航空零件加工中已得到了应用,环形燃烧室的冷却孔加工是典型的应用实例。此外,高速飞机的机翼和发动机进气道的前沿,气流极易与翼表面分离,形成紊流增大而气动力损失,为此,设计了有吸气功能的层流翼(短舱)套,其表面是由1mm厚的钛合金板制成,上面分布了1200万至10亿个锥孔,外表面孔径0.06mm,内表面孔径为0.1mm,孔间距为0.31mm,层流翼套的小孔也是用飞行打孔法完成的。对于微米量级孔径的筛孔,用准分子激光或调Q的YAG激光快速扫描加工(每
38、秒可加工数千孔)可得到满意的结果。 (2) 切割 激光切割近期仍以CO 2 激光为主,随着器件功率的加大,切割深度和速度都有大幅度提高。为提高加工质量,采用高压吹气(压力达1.62.0MPa),用 3.4kW的功率的CO 2 激光可切割56mm厚度的铝板,切口光滑,正、背面不留熔渣。值得提出的是采用两束激光复合切割材料,能取得更低的能耗。图1是两种激光复合切割的实验装置示意图。试验表明,用CO(270W)激光与KrF (30W)激光复合切割,比单用一束CO(300W)激光切割碳钢可提高速度30%,切割厚度可增加40%以上。 (3) 焊接激光焊接在仪器仪表业中早有应用,近期研究方向主要集中在航空
39、航天工业中的高温合金、钛合金和铝、镁等难焊接合金的加工;汽车工业中的大厚度、变厚度钢材的深穿透焊接方面。 大型客机发动机短舱的吊挂采用2.5kW CO 2 激光焊接技术;发动机的压缩机静子是由激光切割叶型孔后再用激光将叶片和外环焊在一起构成,用2kW连续输出的YAG激光设备加工,焊接速度达7m/min。在汽车行业中,激光焊接所占比例已逐年上升,从车身面板同样材料的焊接发展到不同厚度和不同表面涂层的金属板件的焊接。法国SCIAKY公司建立了一个 6kW的 CO 2 激光加工站,用分光镜将激光束分到12个工位同时进行点焊,5秒钟可焊一件,不仅节省了612个电阻点焊机器人,而且因减少搭接宽度使汽车重
40、量减轻 56kg。激光焊接技术研究的前沿,一是大功率或超大功率焊接时,对出现的等离子体的控制,采用侧向吹气压缩法,将等离子云压在熔池形成的缝中来改善等离子云的屏蔽行为。另一个动向是采用模糊逻辑的方法,对焊接过程进行智能控制,这对变厚度变参量的焊接过程具有重要意义。 4.2 激光领域加工方法的新进展 (一)激光快速成型 激光快速成型技术是激光技术与计算机技术相结合的一项高新制造技术,主要功能是将三维数据快速转化成实体,具有很大效益。其基本原理是先在计算机中生成产品的CAD三维实体模型,再将它“切成”规定厚度的片层数据(变换成一系列二维图形数据),用激光切割或烧结办法将材料进行选区逐层叠加,最终形
41、成实体模型。 逐层叠加有以下几种方法: 1.液相树脂固化法(SL)。材质是光敏树脂,紫外波段激光作平面选区扫描照射,使树脂按指定区域固化(悬空部分需设支撑)。机床作下沉运动,使已成型部分浸没于液面之下。这种方法的优点是零件表面光滑,变形小;缺点是强度低,树脂价高且保存期短。 2. 选区烧结法(SLS)。材质有石蜡、塑料、尼龙、陶瓷、包覆金属和裸金属等,均为粉末状态。用50100W的CO 2 激光器作烧结工具,激光束作二维选区扫描,使粉末“烧结”成型。机床须具备送粉、铺粉、刮平及预热等功能。这种方法价格便宜,精度较高(0.1mm),可直接代替木模制砂型。金属零件的快速制造,金属粉末烧结的关键是防
42、氧化和热传导,一种方法是在金属粉末外涂覆粘合剂,用激光选区照射,粘合剂热溶粘接成型后,将零件由粉末中取出,再往缝隙中灌注金属最后制成零件。另一种新研究的方法是用无涂覆的金属粉末直接烧结制造零件,如用铜、镍或铝粉,颗粒度在 22.590 m间用600W的YAG激光烧结。采用这种方法加工的零件材质会出现空隙,为改善空隙,也有采用选区激光直接喷涂叠加成型,原材料为粉状 Inconel625,用3kW射频激励的CO 2 激光作光源。 3.叠层粘接法(LOM)。材质是纸,经背面涂粘接剂等处理。选用2550W的 CO 2 激光平面切割机构,机床完成纸带的送进铺平及滚压(粘接)等功能。成型零件尺寸较大,强度较高,但精度较低,腔形零件腔内排废纸难,零件抗潮性差。为此,采用后置表面涂覆环氧加铝粉处理,可大大提高纸质的耐