《《腰堡模拟题》word版.doc》由会员分享,可在线阅读,更多相关《《腰堡模拟题》word版.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、姓 名班 级考 号2008年中考数学模拟题(一)考试时间120分钟,试卷满分150分.一、选择题(本大题共8小题,每题3分,共24分. 在每题所给出的四个选项中,只有一项是符合题意的. 请把正确答案的序号题后的括号内,否则不得分. 相信你一定会选对!)题号12345678总分答案1、为迎接2008年北京奥运会修建的鸟巢,将用于国际、国内体育比赛和文化、娱乐活动,鸟巢的建筑面积约为258000平方米,将258000用科学记数法表示应为A B C D 2、一个等边三角形绕其旋转中心至少旋转( )度,才能与自身重合.A.30 B.60 C.120 D.1803、4由若干个小立方块所搭成的几何体的主视
2、图、左视图如下图所示,则该几何体的俯视图不可能是4、对于反比例函数,下列说法不正确的是 A点在它的图象上 B它的图象在第一、三象限 C当时,随的增大而增大D当时,随的增大而减小5、如图,在周长为20cm的ABCD中,ABAD,AC、BD相交于点O,OEBD交AD于E,则ABE的周长为 (A)4cm (B)6c (C)8cm (D)10cm6、若O1和O2相切,且两圆的圆心距为9,则两圆的半径不可能是( ) A4和5 B7和9 C10和1 D9和187、下列事件的概率是的是. 任意两个偶数的和是的倍数. 任意两个奇数的和是的倍数. 任意两个质数的和是的倍数. 任意两个整数的和是的倍数ABCD8、
3、下列图形中,不是轴对称图形的是二填空题(本大题共有8小题,每空3分,共24分请把结果直接填在题中的横线上只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)9、把分解因式的结果是_ _。10、一组数据1,7,3,x,10的平均数是5,那么这组数据的中位数是 。A(第16题图)B12Oxy11、如图:四边形ABCD是O的内接正方形,P是弧AB的中点,PD与AB交于E点,则 .第3题图12、,依据上述规律,。13、化简:=_.14、抛物线y2x2+4x+5的对称轴是x= 。15、圆锥的底面半径为1cm,母线长为3cm,圆锥的侧面积是 cm2。16、如图,A、B是双曲线的一个分支上的两点,且点
4、B(a,b)在点A的右侧,则b的取值范围是_。三、(每题8分,共16分,解答应写出过程)17、计算18、某超市销售一批羽绒服,平均每天可售20件,每件盈利40元,为扩大销售增加盈利,超市决定适当降价,如果每件羽绒服降阶1元,平均每天可多售出2件,如果超市要保证平均每天要盈利1200元,同时又要顾客得到实惠,那么每件羽绒服应降价多少元?四、(每题10分,共20分)19、村村通路工程”加快了我市建设社会主义新农村的步伐如图,村村民们欲修建一条水泥公路将村与县级公路相连在公路处测得村在北偏东方向,前进500米,在处测得村在北偏东方向(1)为节约资源,要求所修公路长度最短试求符合条件的公路长度(结果保
5、留整数)(2)经预算,修建1000米这样的水泥公路约需人民币20万元按国家的相关政策,政府对修建该条水泥公路拨款人民币5万元,其余部分由村民自发筹集试求修建该条水泥公路村民需自筹资金多少万元(,)AB县级公路北20、某学校为丰富大课间自由活动的内容,随机选取本校部分学生进行调查,调查内容是“你最喜欢的自由活动项目是什么?”,已知喜欢“跳绳”的学生人数占被调查学生的20,整理收集到的数据,绘制成下图。(1)学校采用的调查方式是 ,被调查的学生 名;(2)求喜欢“踢毽子”的学生人数,并在下图中将“踢毽子”部分的图形补充完整;(3)该校共有800名学生,请估计喜欢“其他”的学生人数。5101520人
6、数302540350跳绳躲避球踢毽子其他自由活动项目五、(每题10分,共20分)21、一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意捧出1球是红球的概率为0.5 (1)试求袋中绿球的个数; (2)第1次从袋中任意摸出l球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率22、如图18,已知:在ABC中,BAC90,延长BA到点D,使ADAB,点E、F分别为边BC、AC的中点求证:DFBE.EFBDCA图18六(每题10分,共20分)23有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行
7、挖掘下图是反映所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图象请解答下列问题:(1)乙队开挖到30米时,用了_小时开挖6小时时,甲队比乙队多挖了_米;(2)请你求出:甲队在0x6的时段内,y与x之间的函数关系式;乙队在2x6的时段内,y与x之间的函数关系式; 开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度应每小时增加多少米,才能与甲队同时完成110米的挖掘任务?24如图,点E是正方形ABCD边BA延长线上一点(AEAD) ,连结DE.与正方形ABCD的外接圆相交于点F, BF与AD相交于点G.(1)求证:BG=DE;(2)若ta
8、nE=2,BE=,求BG的长.七、(满分12分)25、如图,小明在研究正方形ABCD的有关问题时,得出:“在正方形ABCD中,如果点E是CD的中点,点F是BC边上的一点,且FAEEAD,那么EFAE”。他又将“正方形”改为“矩形”、“菱形”和“任意平行四边形”(如图、图、图),其它条件不变,发现仍然有“EFAE”结论。你同意小明的观点吗?若同意,请结合图加以证明;若不同意,请说明理由。(第23题图)AAAABBBBCCCCDDEDDEEEFFFF图图图图八、(满分14分)26、(12分)如图:已知抛物线轴交于A、B两点,与轴交于点C,O为坐标原点。(1)求A、B、C三点的坐标;(2)已知矩形DEFG的一条边DE在AB上,顶点F、G分别在BC、AC上,设OD=,矩形DEFG的面积为S,求S与的函数关系式,并指出的取值范围;(3)当矩形DEFG的面积S取最大值时,连接对角线DF并延长至点M,使FM=DF,试探究此时点M是否在抛物线上,请说明理由。