《X射线光电子能谱分析方法及原理XPS.ppt》由会员分享,可在线阅读,更多相关《X射线光电子能谱分析方法及原理XPS.ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、X射线光电子能谱射线光电子能谱(X-ray Photoelectron Spectroscopy)(X-ray Photoelectron Spectroscopy)XPS 的发展的发展基本概念基本概念XPS 的工作流程及原理的工作流程及原理XPS谱线中伴峰的来源谱线中伴峰的来源XPS谱图中伴峰的鉴别谱图中伴峰的鉴别利用利用XPS谱图鉴别物质谱图鉴别物质XPS的实验方法的实验方法XPS谱图的解释步骤谱图的解释步骤XPS 的特点的特点 主要内容:主要内容:XPS 的发展:的发展:XPS理论首先是由瑞典皇家科学院院士、乌普萨拉大学物理研究所所长 KSiebahn 教授创立的。原名为化学分析电子能谱
2、:ESCA(Electron Spectroscopy for Chemical Analysis)。1954年研制成世界上第一台双聚焦磁场式光电子能谱仪。XPS是一种对固体表面进行定性、定量分析和结构鉴定的实用性很强的表面分析方法。现今世界上关于XPS的刊物主要有:Journal of Electron Spectroscopy.Related Phenomena.基本概念:基本概念:光电子能谱光电子能谱光电子能谱光电子能谱:反应了原子(或离子)在入射粒子(一般为X-ray)作用下发射出来的电子的能量、强度、角分布等信息。X-ray:X-ray:原子外层电子从L层跃迁到K层产生的射线。常见的
3、X射线激发源有:Mg:KaMg:Ka1,21,2(1254ev,ev)Al:Ka(1254ev,ev)Al:Ka1,21,2(1487ev,ev)(1487ev,ev)Cu :Ka Cu :Ka1,21,2(8048ev,ev)Ti :Ka(8048ev,ev)Ti :Ka1,21,2(4511ev,(4511ev,线宽线宽ev)ev)电子结合能:电子结合能:电子结合能:电子结合能:由光电过程的Einstein方程:h=Eb+1/2mv2 ,求出:Eb=h-Ek。引入Fermi能级后,光电过程的能量关系如图所示:由图可知:Eb=h-Ek 而 Ek+Ek+p 知 Eb h-Ek-p (p平均值约
4、为4ev)(其中,Ek为从样品出射光电子的动能;Ek为谱仪测量到的光电子的动能)上式即为原子内层电子结合能公式。样品与谱仪间的接触电位差VV等于样品与谱仪的功能函数之差:-pp(功能函数就是把一个电子从(功能函数就是把一个电子从FermiFermi能级移到自由能级所需要的能量)能级移到自由能级所需要的能量)样品样品h h(X-ray)(X-ray)E Eb b自由电子能级自由电子能级自由电子能级自由电子能级 E Ek k VV pp导带导带价带价带E Ek kFermiFermi能级能级自由电子能级自由电子能级自由电子能级自由电子能级实际测量时,利用标准样品的基准谱线来校正被测谱线的结合能,称
5、为内标法:E Eb(b(测测测测)=E=Ek(k(标标标标)+E+Eb(b(标标标标)-E-Ek(k(测测测测)(其中,(其中,(其中,(其中,E Ek(k(标标标标)和和和和E Eb(b(标标标标)已知,已知,已知,已知,E Ek(k(测测测测)可由谱仪测出)可由谱仪测出)可由谱仪测出)可由谱仪测出)化学位移化学位移化学位移化学位移:又称结合能位移,原子的内层电子结合能随原子周围化学环境变化的现象称为化学位移。影响化学位移的因素有:(如图所示)。非导电材料的表面荷电效应;非导电材料的表面荷电效应;非导电材料的表面荷电效应;非导电材料的表面荷电效应;固体的热效应;固体的热效应;固体的热效应;固
6、体的热效应;自由分子的压力效应;自由分子的压力效应;自由分子的压力效应;自由分子的压力效应;凝聚态物质的固态效应凝聚态物质的固态效应凝聚态物质的固态效应凝聚态物质的固态效应.hEb EbEbE=0EkEkEk化学位移为:Eb=Ek光电效应:光电效应:光电效应:光电效应:原子在X-ray的作用下,内层电子得到能量 而发生电离成为自由电子(光电子)的现象。光电截面光电截面光电截面光电截面:表示光离子化几率。与下列因素有关:a.a.原子中不同能级原子中不同能级 不同;不同;b.b.不同元素不同元素 随原子序数随原子序数Z Z的增大而的增大而增大;增大;c.c.一般地说,同一元素壳层半径愈小一般地说,
7、同一元素壳层半径愈小 愈大;愈大;d.d.电电子子结结合能与入射光的能量愈接近合能与入射光的能量愈接近 愈大;愈大;e.e.对同一壳层:对同一壳层:随角量随角量子数子数()()的增大而增大。的增大而增大。原子能级:原子能级:原子能级:原子能级:与原子中的四个量子数有关,其物理意义为:a.a.主量子数主量子数n n;b.b.角量子数角量子数 ;c.c.磁量子数磁量子数mml l;d.d.自旋量子数自旋量子数mms s 自旋与轨道偶合产生能级分裂:j=|j=|+m+ms s|=|=|1/21/2|,在 0的各亚壳层将分裂成两个能级,XPS中出现双峰。XPS 的工作流程:的工作流程:光 源(X-ra
8、y)过滤窗样品室能量分析器检测器扫描和记录系统真空系统(1.3310-51.3310-8Pa)磁屏蔽系统(110-8T)XPS 的工作原理:的工作原理:电离放出光电子X-ray样品能量分析器检测器(记录不同能量的电子数目)光电子产生过程:e-h(X-ray)A A(中性分子或原子中性分子或原子中性分子或原子中性分子或原子)+h+h(X-ray)(X-ray)A A+*+*(激发态的离子)(激发态的离子)(激发态的离子)(激发态的离子)+e+e-(光电子光电子光电子光电子)XPS谱线中伴峰的来源:谱线中伴峰的来源:振离振离振离振离(Shake-off):(Shake-off):多重电离过程(能量
9、差为带有一个内层空穴离子基态的电离电位)A+h=(A2+)*+2e-正常:Ek(2P)=h-Eb(2P)振离:Ek(2P)=h-Eb(2P)+Eb(3d)振激振激振激振激(Shake-up):(Shake-up):在X-ray作用下内层电子发生电离而使外层电子跃迁到激发的束缚态导至发射光电子的动能减少。(能量差为带有一个内层空穴离子基态的电离电位)能量损失能量损失能量损失能量损失(Energy loss):(Energy loss):由于光电子在穿过样品表面时同原子(或分子)发生非弹性碰撞而引起的能量损失。X X射线伴线射线伴线射线伴线射线伴线(X-ray statellites):(X-ra
10、y statellites):X-ray不是单一的Ka,还有Ka1,2,3,4,5,6以及K。(主要有Ka3,4构成)多重分裂多重分裂多重分裂多重分裂(Multiplet splitting):(Multiplet splitting):一般发生在基态有未成对电子的原子中。俄歇电子俄歇电子俄歇电子俄歇电子(Auger electron):(Auger electron):当原子内层电子光致电离而射出后,内层留下空穴,原子处于激发态,这种激发态离子要向低能态转化而发生弛豫,其方式可以通过辐射跃迁释放能量,波长在X射线区称为X射线荧光;或者通过非辐射跃迁使另一电子激发成自由电子,这种电子就称为俄歇
11、电子。对其进行分析能得到样品原子种类方面的信息。其过程为:其过程为:其过程为:其过程为:A+hA+h(A(A+)*+e+e-(光电子光电子光电子光电子)A A+h h (X(X荧荧荧荧光光光光)A A2+2+e+e-(俄歇电子俄歇电子俄歇电子俄歇电子)两两者者只只能能选选择择其其一一(原子序数(原子序数(原子序数(原子序数Z30Z30的元素以发射俄歇电子为主)的元素以发射俄歇电子为主)的元素以发射俄歇电子为主)的元素以发射俄歇电子为主)俄歇电子产生过程图解:俄歇电子产生过程图解:hv(X-rayhv(X-ray荧光荧光)俄歇电子俄歇电子e e-EnergyEnergy处于激发态离子处于激发态离
12、子处于激发态离子处于激发态离子产生产生产生产生X-rayX-ray荧光过程荧光过程荧光过程荧光过程处于激发态离子处于激发态离子处于激发态离子处于激发态离子产生俄歇电子的过程产生俄歇电子的过程产生俄歇电子的过程产生俄歇电子的过程XPS谱图中伴峰的鉴别:谱图中伴峰的鉴别:(在(在XPSXPS中化学位移比较小,一般只有几中化学位移比较小,一般只有几evev,要想对,要想对化学状态作出鉴定,首先要区分光电子峰和伴峰)化学状态作出鉴定,首先要区分光电子峰和伴峰)光电子峰:光电子峰:光电子峰:光电子峰:在XPS中最强(主峰)一般比较对称且半宽度最窄。俄歇电子峰:俄歇电子峰:俄歇电子峰:俄歇电子峰:Auge
13、r有两个特征:1.Auger与X-ray源无关,改变X-ray,Auger不变。2.Auger是以谱线群的形式出现的。振激和振离峰:振激和振离峰:振激和振离峰:振激和振离峰:振离峰以平滑连续 谱的形式出现在光电子主峰低动能的 一边,连续谱的高动能端有一陡限。振激峰也是出现在其低能端,比主峰 高几ev,并且一条光电子峰可能有几 条振激伴线。(如右图所示)强度I动能Ek振离峰振离峰振激峰振激峰主峰主峰能量损失峰:能量损失峰:能量损失峰:能量损失峰:其特点是随X-ray的波动而波动。多重分裂峰:多重分裂峰:多重分裂峰:多重分裂峰:多重分裂峰的相对强度等于终态的统计权重。如:Mn2+离子具有5个未成对
14、电子,从Mn2+内层发射一个s电子,其J值为(5/2+1/2)和(5/2-1/2),其强度正比于(2J+1),即其分裂峰的相对强度为7:5;X-rayX-ray伴线产生的伴峰:伴线产生的伴峰:伴线产生的伴峰:伴线产生的伴峰:X-ray的伴线能量比主线(Ka1,2)高,因此样品XPS中光电子伴峰总是位于主峰的低结合能一端(如下图所示),这也是X-ray伴线产生的伴峰不同于其 它伴峰的主要标志。非弹性散射非弹性散射非弹性散射非弹性散射AlKaAlKa1,21,2AlKaAlKa3,43,4动能(动能(动能(动能(evev)强强强强 度度度度(I I)结合能(结合能(evev)利用XPS谱图鉴定物质
15、成分:利用某元素原子中电子的特征结合能来鉴别物质。自旋-轨道偶合引起的能级分裂,谱线分裂成双线(强度比),特别对于微量元素:对于P1/2和P3/2的相对强度为1:2,d3/2和d5/2为2:3,f5/2和f7/2为3:4;下图是Si的2P电子产生的分裂峰(1:2):利用俄歇化学位移标 识谱图鉴定物质:如:如:如:如:CuCu与与与与CuOCuO的的的的eVeV Ag Ag与与与与AgAg2 2SOSO4 4eVeV而对它们来说俄歇化学位移相当大。而对它们来说俄歇化学位移相当大。而对它们来说俄歇化学位移相当大。而对它们来说俄歇化学位移相当大。2P2P1/21/22P2P3/23/21051059
16、595电子结合能(电子结合能(电子结合能(电子结合能(eVeV)Si 2pSi 2p XPS的实验方法:的实验方法:样品的预处理样品的预处理样品的预处理样品的预处理 :(对固体样品)1.溶剂清洗(萃取)或长时间抽真空除表面污染物。2.氩离子刻蚀除表面污物。注意刻蚀可能会引起表面化学性质的变化(如氧化还原反应)。3.擦磨、刮剥和研磨。对表理成分相同的样品可用SiC(600#)砂纸擦磨或小刀刮剥表面污层;对粉末样品可采用研磨的方法。4.真空加热。对于能耐高温的样品,可采用高真空下加热的办法除去样品表面吸附物。样品的安装:样品的安装:样品的安装:样品的安装:一般是把粉末样品粘在双面胶带上或压入铟箔(
17、或金属网)内,块状样品可直接夹在样品托上或用导电胶带粘在样品托上进行测定。其它方法:其它方法:1.压片法:对疏松软散的样品可用此法。2.溶解法:将样品溶解于易挥发的有机溶剂中,然后将其滴在样品托上让其晾干或吹干后再进行测量。3.研压法:对不易溶于具有挥发性有机溶剂的样品,可将其少量研压在金箔上,使其成一薄层,再进行测量。样品荷电的校正:样品荷电的校正:样品荷电的校正:样品荷电的校正:(绝缘体的荷电效应是影响结果的一个重要因素绝缘体的荷电效应是影响结果的一个重要因素)1.消除法:用电子中和枪是目前减少荷电效应的最好方法;另一种方法是,在导电样品托上制备超薄样品,使谱仪和样品托达到良好的电接触状态
18、。2.校正法:主要有以下几种方法:a.镀金法;b.外标法;c.内标法;d.二次内标法;e.混合法;f.氩注入法。XPS谱图的解释步骤:谱图的解释步骤:在XPS谱图中首先鉴别出C1s、O1s、C(KLL)和O(KLL)的谱峰(通常比较明显)。鉴别各种伴线所引起的伴峰。先确定最强或较强的光电子峰(或俄歇电子峰),再鉴定弱的谱线。辨认p、d、f自旋双重线,核对所得结论。XPS 的特点:的特点:可以分析除H和He以外的所有元素。相邻元素的同种能级的谱线相隔较远,相互干扰较少,元素定性的标识性强。能够观测化学位移,化学位移同原子氧化态、原子电荷和官能团有关。化学位移信息是利用XPS进行原子结构分析和化学键研究的基础。可作定量分析,即可测定元素的相对浓度,又可测定相同元素的不同氧化态的相对浓度。是一种高灵敏超微量表面分析技术,样品分析的深度约为20,信号来自表面几个原子层,样品量可少至10-8g,绝对灵敏度高达10-18g。