《《SPSS判别分析》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《SPSS判别分析》PPT课件.ppt(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第五节第五节 实例分析与计算机实现实例分析与计算机实现n这一节我们利用这一节我们利用SPSS对对Fisher判别法和判别法和Bayes判别法进行计判别法进行计算机实现。算机实现。n为研究某地区人口死亡状况,已按某种方法将为研究某地区人口死亡状况,已按某种方法将15个已知地区个已知地区样品分为样品分为3类,指标含义及原始数据如下。试建立判别函数,类,指标含义及原始数据如下。试建立判别函数,并判定另外并判定另外4个待判地区属于哪类?个待判地区属于哪类?X1 :0岁组死亡概率岁组死亡概率 X 4:55岁组死亡概率岁组死亡概率 X 2:1岁组死亡概率岁组死亡概率 X5 :80岁组死亡概率岁组死亡概率
2、X 3:10岁组死亡概率岁组死亡概率 X6 :平均预期寿命平均预期寿命 表表4.1 各地区死亡概率表各地区死亡概率表(一一)操作步骤操作步骤1.在在SPSS窗口中选择窗口中选择AnalyzeClassifyDiscriminate,调,调出判别分析主界面,将左边的变量列表中的出判别分析主界面,将左边的变量列表中的“group”变量变量选入分组变量中,将选入分组变量中,将变量选入自变量中,并选择变量选入自变量中,并选择Enter independents together单选按钮,即使用所有自变量进行判单选按钮,即使用所有自变量进行判别分析。别分析。图图4.2 判别分析主界面判别分析主界面2.点
3、击点击Define Range按钮,定义分组变量的取值范围。本例按钮,定义分组变量的取值范围。本例中分类变量的范围为中分类变量的范围为1到到3,所以在最小值和最大值中分别输,所以在最小值和最大值中分别输入入1和和3。单击。单击Continue按钮,返回主界面。按钮,返回主界面。3.单击单击Statistics按钮,指定输出的描述统计量和判别函数按钮,指定输出的描述统计量和判别函数系数。选中系数。选中Function Coefficients栏中的栏中的Fishers和和Unstandardized。这两个选项的含义如下:。这两个选项的含义如下:Fishers:给出:给出Bayes判别函数的系数
4、。(注意:这个选项不是判别函数的系数。(注意:这个选项不是要给出要给出Fisher判别函数的系数。这个复选框的名字之所以为判别函数的系数。这个复选框的名字之所以为Fishers,是因为按判别函数值最大的一组进行归类这种思想,是因为按判别函数值最大的一组进行归类这种思想是由是由Fisher提出来的。这里极易混淆,请读者注意辨别。)提出来的。这里极易混淆,请读者注意辨别。)Unstandardized:给出未标准化的:给出未标准化的Fisher判别函数(即典型判判别函数(即典型判别函数)的系数(别函数)的系数(SPSS默认给出标准化的默认给出标准化的Fisher判别函数系数)判别函数系数)。n单击
5、单击Continue按钮,返回主界面。按钮,返回主界面。图图4.3 Statistics子对话框子对话框4.单击单击Classify按钮,定义判别分组参数和选择输出结果。按钮,定义判别分组参数和选择输出结果。选择选择Display栏中的栏中的Casewise results,输出一个判别结果表,输出一个判别结果表,包括每个样品的判别分数、后验概率、实际组和预测组编号包括每个样品的判别分数、后验概率、实际组和预测组编号等。其余的均保留系统默认选项。单击等。其余的均保留系统默认选项。单击Continue按钮。按钮。图图4.4 Classify子对话框子对话框5.单击单击Save按钮,指定在数据文件
6、中生成代表判别分组结果按钮,指定在数据文件中生成代表判别分组结果和判别得分的新变量,生成的新变量的含义分别为:和判别得分的新变量,生成的新变量的含义分别为:Predicted group membership:存放判别样品所属组别的值;:存放判别样品所属组别的值;Discriminant scores:存放:存放Fisher判别得分的值,有几个典型判别得分的值,有几个典型判别函数就有几个判别得分变量;判别函数就有几个判别得分变量;Probabilities of group membership:存放样品属于各组的:存放样品属于各组的Bayes后验概率值。后验概率值。n将对话框中的三个复选框均
7、选中,单击将对话框中的三个复选框均选中,单击Continue按钮返回。按钮返回。6.返回判别分析主界面,单击返回判别分析主界面,单击OK按钮,运行判别分析过程。按钮,运行判别分析过程。图图4.5 Save子对话框子对话框(二)(二)主要运行结果解释主要运行结果解释1.Standardized Canonical Discriminant Function Coefficients(给出标准化的典型判别函数系数)(给出标准化的典型判别函数系数)标准化的典型判别函数是由标准化的自变量通过标准化的典型判别函数是由标准化的自变量通过Fisher判别法判别法得到的,所以要得到标准化的典型判别得分,代入该
8、函数的自得到的,所以要得到标准化的典型判别得分,代入该函数的自变量必须是经过标准化的。变量必须是经过标准化的。2.Canonical Discriminant Function Coefficients(给出未标(给出未标准化的典型判别函数系数)准化的典型判别函数系数)未标准化的典型判别函数系数由于可以将实测的样品观测值直未标准化的典型判别函数系数由于可以将实测的样品观测值直接代入求出判别得分,所以该系数使用起来比标准化的系数要接代入求出判别得分,所以该系数使用起来比标准化的系数要方便一些。见表(方便一些。见表(a)。)。由此表可知,两个由此表可知,两个Fisher判别函数分别为:判别函数分别
9、为:实际上两个函数式计算的是各观测值在各个维度上的坐标,这实际上两个函数式计算的是各观测值在各个维度上的坐标,这样就可以通过这两个函数式计算出各样品观测值的具体空间位样就可以通过这两个函数式计算出各样品观测值的具体空间位置。置。表(表(a)未标准化的典型判别函数系数未标准化的典型判别函数系数3.Functions at Group Centroids(给出组重心处的(给出组重心处的Fisher判判别函数值)别函数值)如表如表4.2(b)所示,实际上为各类别重心在空间中的坐标位置。所示,实际上为各类别重心在空间中的坐标位置。这样,只要在前面计算出各观测值的具体坐标位置后,再计算这样,只要在前面计
10、算出各观测值的具体坐标位置后,再计算出它们分别离各重心的距离,就可以得知它们的分类了。出它们分别离各重心的距离,就可以得知它们的分类了。表(表(b)组重心处的组重心处的Fisher判别函数值判别函数值 4.Classification Function Coefficients(给出(给出Bayes判别函数判别函数系数)系数)如表所示,如表所示,GROUP栏中的每一列表示样品判入相应列的栏中的每一列表示样品判入相应列的Bayes判别函数系数。在本例中,各类的判别函数系数。在本例中,各类的Bayes判别函数如下:判别函数如下:第一组:第一组:第二组:第二组:第三组:第三组:将各样品的自变量值代入
11、上述三个将各样品的自变量值代入上述三个Bayes判别函数,得到三个判别函数,得到三个函数值。比较这三个函数值,哪个函数值比较大就可以判断该函数值。比较这三个函数值,哪个函数值比较大就可以判断该样品判入哪一类。例如,将第一个待判样品的自变量值分别代样品判入哪一类。例如,将第一个待判样品的自变量值分别代入函数,得到:入函数,得到:F1,F2,F3比较三个值,可以看出最大,据此得出第一个待判样品应该属比较三个值,可以看出最大,据此得出第一个待判样品应该属于第三组。于第三组。表表4.3 Bayes判别法的输出结果判别法的输出结果5.Casewise Statistics(给出个案观察结果)(给出个案观
12、察结果)在在Casewise Statistics输出表针对每个样品给出了了大部分的判输出表针对每个样品给出了了大部分的判别结果,其中包括:实际类(别结果,其中包括:实际类(Actual Group)、预测类)、预测类(Predicted Group)、)、Bayes判别法的后验概率、与组重心的判别法的后验概率、与组重心的马氏距离(马氏距离(Squared Mahalanobis Distance to Centroid)以及)以及Fisher判别法的每个典型判别函数的判别得分(判别法的每个典型判别函数的判别得分(Discriminant Scores)。出于排版要求,这里给出结果表的是经过加
13、工的,)。出于排版要求,这里给出结果表的是经过加工的,隐藏了其中的一些项目,如表所示。从表中可以看出四个待判隐藏了其中的一些项目,如表所示。从表中可以看出四个待判样本依次被判别为第三组、第一组、第二组和第三组。样本依次被判别为第三组、第一组、第二组和第三组。表表4.4 个案观察结果表个案观察结果表6.由于我们在由于我们在Save子对话框中选择了生成表示判别结果的新子对话框中选择了生成表示判别结果的新变量,所以在数据编辑窗口中,可以观察到产生的新变量。变量,所以在数据编辑窗口中,可以观察到产生的新变量。其中,变量其中,变量dis-1存放判别样品所属组别的值,变量存放判别样品所属组别的值,变量dis1-1和和dis2-1分别代表将样品各变量值代入第一个和第二个判别函分别代表将样品各变量值代入第一个和第二个判别函数所得的判别分数,变量数所得的判别分数,变量dis1-2、dis2-2和和dis3-2分别代表样分别代表样品分别属于第品分别属于第1组、第组、第2组和第组和第3组的组的Bayes后验概率值。后验概率值。