高数同济六版bai-D3_3泰勒公式.ppt

上传人:安*** 文档编号:53447019 上传时间:2022-10-26 格式:PPT 页数:30 大小:1.53MB
返回 下载 相关 举报
高数同济六版bai-D3_3泰勒公式.ppt_第1页
第1页 / 共30页
高数同济六版bai-D3_3泰勒公式.ppt_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《高数同济六版bai-D3_3泰勒公式.ppt》由会员分享,可在线阅读,更多相关《高数同济六版bai-D3_3泰勒公式.ppt(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、目录 上页 下页 返回 结束 二、几个初等函数的麦克劳林公式二、几个初等函数的麦克劳林公式 第三节一、泰勒公式的建立一、泰勒公式的建立三、泰勒公式的应用三、泰勒公式的应用 应用目的用多项式近似表示函数.理论分析近似计算泰勒公式 第三三章 目录 上页 下页 返回 结束 特点:一、泰勒公式的建立一、泰勒公式的建立以直代曲以直代曲在微分应用中已知近似公式:需要解决的问题如何提高精度?如何估计误差?x 的一次多项式目录 上页 下页 返回 结束 1.求求 n 次近似多项式次近似多项式要求要求:故令则目录 上页 下页 返回 结束 2.余项估计余项估计令(称为余项),则有目录 上页 下页 返回 结束 目录

2、上页 下页 返回 结束 公式 称为 的 n 阶泰勒公式阶泰勒公式.公式 称为n 阶泰勒公式的拉格朗日余项拉格朗日余项.泰勒泰勒(Taylor)中值定理中值定理:阶的导数,时,有其中则当泰勒 目录 上页 下页 返回 结束 公式 称为n 阶泰勒公式的佩亚诺佩亚诺(Peano)余项余项.在不需要余项的精确表达式时,泰勒公式可写为注意到*可以证明:式成立目录 上页 下页 返回 结束 特例特例:(1)当 n=0 时,泰勒公式变为(2)当 n=1 时,泰勒公式变为给出拉格朗日中值定理可见误差目录 上页 下页 返回 结束 称为麦克劳林麦克劳林(Maclaurin)公式公式.则有在泰勒公式中若取则有误差估计式

3、若在公式成立的区间上麦克劳林 由此得近似公式目录 上页 下页 返回 结束 二、几个初等函数的麦克劳林公式二、几个初等函数的麦克劳林公式其中麦克劳林公式麦克劳林公式 目录 上页 下页 返回 结束 其中麦克劳林公式麦克劳林公式 目录 上页 下页 返回 结束 麦克劳林公式麦克劳林公式 类似可得其中目录 上页 下页 返回 结束 其中麦克劳林公式麦克劳林公式 目录 上页 下页 返回 结束 已知其中因此可得麦克劳林公式麦克劳林公式 目录 上页 下页 返回 结束 三、泰勒公式的应用三、泰勒公式的应用1.在近似计算中的应用在近似计算中的应用 误差M 为在包含 0,x 的某区间上的上界.需解问题的类型:1)已知

4、 x 和误差限,要求确定项数 n;2)已知项数 n 和 x,计算近似值并估计误差;3)已知项数 n 和误差限,确定公式中 x 的适用范围.目录 上页 下页 返回 结束 例例1.计算无理数 e 的近似值,使误差不超过解解:已知令 x=1,得由于欲使由计算可知当 n=9 时上式成立,因此的麦克劳林公式为目录 上页 下页 返回 结束 说明说明:注意舍入误差对计算结果的影响.本例若每项四舍五入到小数点后 6 位,则 各项舍入误差之和不超过总误差限为这时得到的近似值不能保证不能保证误差不超过因此计算时中间结果应比精度要求多取一位.目录 上页 下页 返回 结束 例例2.用近似公式计算 cos x 的近似值

5、,使其精确到 0.005,试确定 x 的适用范围.解解:近似公式的误差令解得即当时,由给定的近似公式计算的结果能准确到 0.005.目录 上页 下页 返回 结束 2.利用泰勒公式求极限利用泰勒公式求极限例例3.求解解:由于用洛必达法则不方便!用泰勒公式将分子展到项,目录 上页 下页 返回 结束 3.利用泰勒公式证明不等式利用泰勒公式证明不等式例例4.证明证证:+目录 上页 下页 返回 结束 内容小结内容小结1.泰勒公式泰勒公式其中余项当时为麦克劳林公式麦克劳林公式.目录 上页 下页 返回 结束 2.常用函数的麦克劳林公式常用函数的麦克劳林公式(P142 P144)3.泰勒公式的应用泰勒公式的应用(1)近似计算(3)其他应用求极限,证明不等式 等.(2)利用多项式逼近函数 例如 目录 上页 下页 返回 结束 思考与练习思考与练习 计算解解:原式第四节 作业作业 P145 4;6;9目录 上页 下页 返回 结束 证证:由题设对备用题备用题 1.有且目录 上页 下页 返回 结束 下式减上式,得令目录 上页 下页 返回 结束 两边同乘 n!=整数+假设 e 为有理数(p,q 为正整数),则当 时,等式左边为整数;矛盾!2.证明 e 为无理数.证证:时,当故 e 为无理数.等式右边不可能为整数.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁