《高中数学《等差数列的前n项和(一)》教案154500.pdf》由会员分享,可在线阅读,更多相关《高中数学《等差数列的前n项和(一)》教案154500.pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!课 题:3.3 等差数列的前 n 项和(一)教学目的:1掌握等差数列前 n 项和公式及其获取思路 2 会用等差数列的前 n 项和公式解决一些简单的与前 n 项和有关的问题 教学重点:等差数列 n 项和公式的理解、推导及应 教学难点:灵活应用等差数列前 n 项公式解决一些简单的有关问题 授课类型:新授课 课时安排:1 课时 教 具:多媒体、实物投影仪 内容分析:本节是在学习了等差数列的概念和性质的基础上,使学生掌握等差数列求和公式,并能利用它求和解决数列和的最值问题等差数列求和公式的推导,采用了倒序
2、相加法,思路的获得得益于等到差数列任意的第 k 项与倒数第 k 项的和都等于首项与末项的和这一性质的认识和发现通过对等差数列求和公式的推导,使学生能掌握“倒序相加”数学方法 教学过程:一、复习引入:首先回忆一下前几节课所学主要内容:1等差数列的定义:na1na=d,(n2,nN)2等差数列的通项公式:dnaan)1(1 (nadmnam)(或na=pn+q(p、q 是常数)3几种计算公差 d 的方法:d=na1na d=11naan d=mnaamn 4等差中项:,2abAa A b成等差数列 5等差数列的性质:m+n=p+q qpnmaaaa(m,n,p,q N)6数列的前 n 项和:数列
3、na中,naaaa321称为数列 na的前 n 项和,记为nS.“小故事”:高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!老师说:“现在给大家出道题目:1+2+100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10算得不亦乐乎时,高斯站起来回答说:“1+2+3+100=5050 教师问:“你是如何算出答案的?高斯回答说:因为 1+100=101;2+99=101;50+51=101,所以 10150=5050”这个故事告诉我们:(1)作为数学王子的高斯从小就善
4、于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西(2)该故事还告诉我们求等差数列前 n 项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法 二、讲解新课:如图,一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放 120 支,这个 V 形架上共放着多少支铅笔?这是一堆放铅笔的 V 形架,这形同前面所接触过的堆放钢管的示意图,看到此图,大家都会很快捷地找到每一层的铅笔数与层数的关系,而且可以用一个式子来表示这种关系,利用它便可以求出每一层的铅笔数.那么,这个 V 形架上共放着多少支铅笔呢?这个问题又该如何解决呢?经过分析
5、,我们不难看出,这是一个等差数求和问题?这个问题,它也类似于刚才我们所遇到的“小故事”问题,它可以看成是求等差数列 1,2,3,n,的前 120 项的和.在上面的求解中,我们发现所求的和可用首项、末项及项数 n 来表示,且任意的第 k 项与倒数第 k 项的和都等于首项与末项的和,这就启发我们如何去求一般等差数列的前 n 项的和.如果我们可归纳出一计算式,那么上述问题便可迎刃而解.1等差数列的前n项和公式 1:2)(1nnaanS 证明:nnnaaaaaS1321 1221aaaaaSnnnn +:)()()()(223121nnnnnnaaaaaaaaS 23121nnnaaaaaa 欢迎您阅
6、读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!)(21nnaanS 由此得:2)(1nnaanS 从而我们可以验证高斯十岁时计算上述问题的正确性 2 等差数列的前n项和公式 2:2)1(1dnnnaSn 用上述公式要求nS必须具备三个条件:naan,1 但dnaan)1(1 代入公式 1 即得:2)1(1dnnnaSn 此公式要求nS必须已知三个条件:dan,1(有时比较有用)总之:两个公式都表明要求nS必须已知nadan,1中三个 公式二又可化成式子:n)2da(n2dS12n,当d0,是一个常数项为零的二次式 三、例题讲解 例 1 一个堆放铅笔的
7、 V 型的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放 120 支,这个 V 形架上共放着多少支铅笔?解:由题意可知,这个 V 形架上共放着 120 层铅笔,且自下而上各层的铅笔成等差数列,记为 na,其中120,11201aa,根据等差数列前 n 项和的公式,得 72602)1201(120120S 答:V 形架上共放着 7260 支铅笔 例 2 等差数列-10,-6,-2,2,前多少项的和是 54?解:设题中的等差数列为 na,前 n 项为nS 则 54,4)10()6(,101nSda 由公式可得5442)1(10nnn 解之得:3,921nn(舍去)等差数列-1
8、0,-6,-2,2前 9 项的和是 54 例3.已知等差数列na中1a=13且3S=11S,那么n取何值时,nS取最大值.欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!解法1:设公差为d,由3S=11S得:313+32d/2=1113+1110d/2 d=-2,na=13-2(n-1),na=15-2n,由0a0a1nn即0)1n(2150n215得:6.5n7.5,所以n=7时,nS取最大值.解法2:由解1得d=-2,又a1=13所以 n)2da(n2dS12n=-n2+14 n =-(n-7)2+49 当n=7,nS取最大值 对等差数列前
9、项和的最值问题有两种方法:(1)利用na:当na0,d0,前n项和有最大值可由na0,且1na0,求得n的值 当na0,前n项和有最小值可由na0,且1na0,求得n的值(2)利用nS:由n)2da(n2dS12n利用二次函数配方法求得最值时n的值 四、练习:1求集合100*,7|mNnnmmM且的元素个数,并求这些元素的和 解:由1007 n得 72147100n 正整数n共有 14 个即M中共有 14 个元素 即:7,14,21,98 是为首项71aAPa的9814 7352)987(14nS 答:略 2.已知一个等差数列的前 10 项的和是 310,前 20 项的和是 1220,欢迎您阅
10、读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!求其前n项和的公式.解:由题设:31010S 122020S 得:122019020310451011dada 641da nnnnnSn2362)1(4 五、小结 本节课学习了以下内容:1.等差数列的前n项和公式 1:2)(1nnaanS 2.等差数列的前n项和公式 2:2)1(1dnnnaSn 3.n)2da(n2dS12n,当 d0,是一个常数项为零的二次式 4.对等差数列前项和的最值问题有两种方法:(3)利用na:当na0,d0,前n项和有最大值可由na0,且1na0,求得n的值 当na0,前n项和有最小值可由na0,且1na0,求得n的值(4)利用nS:n)2da(n2dS12n二次函数配方法求得最值时n的值 六、课后作业:已知等差数列的前n项和为a,前n2项和为b,求前n3项和 解:由题设 aSn bSn2 abaaannn221 而)(2)()(2213221221nnnnnnnaaaaaaaaa)()()(32|212221213nnnnnnnnaaaaaaaaaS)(3)(3221abaaannn 七、板书设计(略)八、课后记: