《算术平方根教学设计(共6页).docx》由会员分享,可在线阅读,更多相关《算术平方根教学设计(共6页).docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第一课时 算术平方根一、教学目标:1、知识与技能(1)、了解算术平方根的概念。(2)、会求正数的算术平方根并会用符号表示。2、过程与方法(1)、通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。(2)、通过裁剪正方形的活动,体验解决问题方法的多样性,发展形象思维。3、情感态度与价值观(1)、通过学习算术平方根,认识数学与人类的密切联系。(2)、通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情。重点:了解数的算术平方根的概念,用根号表示一个数的算术平方根,能求某些非负数的算术平方根。难点:算术平方根的概念,对符号“ ”意义的理解。二、教学方法:本节课主
2、要采用引导探究法三、教学手段:多媒体四、教学过程(一)创设情境导入新课1、教师展示图片并提出问题:问题1:在美术课上老师要求同学将自己的作品画在一块面积为25dm2的正方形画布,你认为这块正方形画布边长应取多少?教师倾听学生回答,并做如下总结:因为52=25,所以正方形画布的边长是5dm。问题2、学生用课前准备的一张边长为2dm的正方形的纸片完成下列任务:能否利用此正方形折出面积为1dm2的小正方形?面积为1dm2的正方形的边长为多少?你能折出面积为2dm2的小正方形吗?面积为2dm2的小正方形的边长为多少?3、如果正方形的面积变为以下数据,你能求出正方形的边长吗?正方形面积a2362.252
3、/326a(a0)边长x教师引导:我们能求出平方等于16、36、2.25的数,但平方等于2、2/3、26、a(a0)的这些数确实存在,而且我们只能猜出他们的范围,而在我们学过的数范围内却找不到它。由此引入课题:算术平方根(板书)注:学生很容易算出16、36、2.25所对应的边长,但不能计算出2、2/3、5、以及a(a0)所对应的边长,使学生利用这个问题给学生提出质疑,引起学生的关注,激发学生学习的欲望和兴趣,并在解开谜题之后培养学生的数感和符号感。(二)新课学习1、教师引导学生得出算术平方根的概念:一般地,如果一个正数x的平方根等于a,即x2a,那么这个正数x就叫做a的算术平方根,记为“ ”,
4、读作“根号a”。特别地,我们规定0的算术平方根是0,即 0。正方形面积a216362.252/35a(a0)边长x461.5回到刚才的表格,我们就能把刚才不能解决的问题解决了教师引导:既然知道了算术平方根可以表示我们先前不能算出的边长,那么我们就可以确定的认为带有根号的这些符号是确确实实存在的数,他们不能完整地表达出来,我们就选择了用“”这个特殊的符号来表示:表示a(a0)的算术平方根。板书:表示方法:a(a0)的算术平方根记作,读作“根号a”,其中 a 叫做被开方数.例如:如24,那么 就叫做 的算术平方根,即=2.问题1:每个同学写出一个数并求出它的算术平方根告诉别的同学.问题2:谈谈你对
5、算术平方根概念和表示方法的理解注:让学生逐步建立算术平方根的符号意识,浅显的理解“”的数学表达。2讲解范例例1:求下列各数的算术平方根:(1)900(2)1(3)4964(4)14第一问:教师示范并板演做题的过程第二问:学生模仿教师的步骤,口述解题步骤,教师书写第三问:一名学生板演,其他学生在练习本上独立完成,师生互评第四问:所有学生独立完成注:本过程规范学生书写格式,训练学生思维过程,在书写与思维的碰撞过程中,让学生体会“”的数感,熟悉算术平方根的符号表示。3、合作探究问题:小组讨论“”的双重非负性(1)若,则9的算术平方根是 ,0的算术平方根是 .若=,则的算术平方根 .结论:负数 算术平
6、方根,即当 0, 有意义.(2)若=16,则 是16的算术平方根.结论: 0.小结: 0(a0).练习1:根据算术平方根的定义,下列各式哪些有意义?哪些没有意义?若有意义,求出相应的值,若没有意义请说明理由 (教学说明:本题以不同形式给出被开方数,使学生在灵活多变的数字环境中,加深了对 意义及性质的理解本题在学生分组讨论,充分交流的基础上进行落实通过对第(3)题的讨论,使学生体会被开方数的非负性通过对其他题目结果的分析,回扣定义体会算术平方根的非负性进而总结出:的双重非负性).拓展:1、求下列各式中的的取值范围. 2、已知,求的值.课堂练习:1、下列说法正确的是( )A、4是8的算术平方根 B
7、、是16的算术平方根C、-4没有算术平方根 D、2是4的算术平方根2、求下列各数的算术平方根(1) (2)1.44 (3)121 3、算术平方根等于它本身的数是 .算术平方根等于它相反数的数是 .4、81的算术平方根是 ;的算术平方根是 .三、课堂小结(设计说明:师生以谈话交流的形式,共同总结本节课的学习收获,同时使学生进一步明确本节课的知识要点)引导学生回顾总结本节你学习了哪些知识与方法,有哪些收获?着重落实以下三点:(1)算术平方根的概念;(2)求算术平方根的方法;(3)的双重非负性四、作业布置习题23五、板书设计课题6.1算术平方根1、 算术平方根概念和表示 学生练习2、 求算术平方根3、 算术平方根的性质专心-专注-专业