基本不等式应用_利用基本不等式求最值的技巧_题型分析.doc

上传人:飞****2 文档编号:53068934 上传时间:2022-10-24 格式:DOC 页数:49 大小:4.49MB
返回 下载 相关 举报
基本不等式应用_利用基本不等式求最值的技巧_题型分析.doc_第1页
第1页 / 共49页
基本不等式应用_利用基本不等式求最值的技巧_题型分析.doc_第2页
第2页 / 共49页
点击查看更多>>
资源描述

《基本不等式应用_利用基本不等式求最值的技巧_题型分析.doc》由会员分享,可在线阅读,更多相关《基本不等式应用_利用基本不等式求最值的技巧_题型分析.doc(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、基本不等式应用一基本不等式1.(1)若,则 (2)若,则(当且仅当时取“=”)2. (1)若,则 (2)若,则(当且仅当时取“=”)(3)若,则 (当且仅当时取“=”)3.若,则 (当且仅当时取“=”);若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)3.若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)4.若,则(当且仅当时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式

2、、解决实际问题方面有广泛的应用应用一:求最值例1:求下列函数的值域(1)y3x 2 (2)yx解:(1)y3x 22 值域为,+) (2)当x0时,yx22;当x0时, yx= ( x)2=2值域为(,22,+)解题技巧:技巧一:凑项例1:已知,求函数的最大值。解:因,所以首先要“调整”符号,又不是常数,所以对要进行拆、凑项,当且仅当,即时,上式等号成立,故当时,。评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。技巧二:凑系数例1. 当时,求的最大值。解析:由知,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到为定值,故只需将凑上一个系数

3、即可。当,即x2时取等号 当x2时,的最大值为8。评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。变式:设,求函数的最大值。解:当且仅当即时等号成立。技巧三: 分离例3. 求的值域。解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x1)的项,再将其分离。当,即时,(当且仅当x1时取“”号)。技巧四:换元解析二:本题看似无法运用基本不等式,可先换元,令t=x1,化简原式在分离求最值。当,即t=时,(当t=2即x1时取“”号)。评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为,g(x)恒

4、正或恒负的形式,然后运用基本不等式来求最值。技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数的单调性。例:求函数的值域。解:令,则因,但解得不在区间,故等号不成立,考虑单调性。因为在区间单调递增,所以在其子区间为单调递增函数,故。所以,所求函数的值域为。练习求下列函数的最小值,并求取得最小值时,x 的值. (1) (2) (3) 2已知,求函数的最大值.;3,求函数的最大值.条件求最值1.若实数满足,则的最小值是 .分析:“和”到“积”是一个缩小的过程,而且定值,因此考虑利用均值定理求最小值, 解: 都是正数,当时等号成立,由及得即当时,的最小值是6变式:若,求的最小值.

5、并求x,y的值技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。2:已知,且,求的最小值。错解:,且, 故 。错因:解法中两次连用基本不等式,在等号成立条件是,在等号成立条件是即,取等号的条件的不一致,产生错误。因此,在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。正解:,当且仅当时,上式等号成立,又,可得时, 。变式: (1)若且,求的最小值(2)已知且,求的最小值技巧七、已知x,y为正实数,且x 21,求x的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab。同时还应化简中y2前面的系数为 , xx

6、 x下面将x,分别看成两个因式:x 即xx 技巧八:已知a,b为正实数,2baba30,求函数y的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。法一:a, abb 由a0得,0b1令tb+1,1t16,ab2(t)34t28 ab18 y 当且仅当t4,即b3,a6时,等号成立。法二:由已知得:30aba2b a2b2 30ab2令u则u22u30

7、0, 5u3 3,ab18,y点评:本题考查不等式的应用、不等式的解法及运算能力;如何由已知不等式出发求得的范围,关键是寻找到之间的关系,由此想到不等式,这样将已知条件转换为含的不等式,进而解得的范围.变式:1.已知a0,b0,ab(ab)1,求ab的最小值。2.若直角三角形周长为1,求它的面积最大值。技巧九、取平方5、已知x,y为正实数,3x2y10,求函数W的最值.解法一:若利用算术平均与平方平均之间的不等关系,本题很简单 2 解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。W0,W23x2y210210()2()2 10(3x

8、2y)20 W2 变式: 求函数的最大值。解析:注意到与的和为定值。又,所以当且仅当=,即时取等号。 故。评注:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件。总之,我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式。应用二:利用基本不等式证明不等式1已知为两两不相等的实数,求证:1)正数a,b,c满足abc1,求证:(1a)(1b)(1c)8abc例6:已知a、b、c,且。求证:分析:不等式右边数字8,使我们联想到左边因式分别使用基本不等式可得三个“2”连乘,又,可由此变形入手。解:a、b、c,。同理,。上述三个

9、不等式两边均为正,分别相乘,得。当且仅当时取等号。应用三:基本不等式与恒成立问题例:已知且,求使不等式恒成立的实数的取值范围。解:令, 。 , 应用四:均值定理在比较大小中的应用:例:若,则的大小关系是 .分析: ( RQP。2012届高三文科数学小综合专题练习不等式一、选择题1设,若,则下列不等式中正确的是( )A B CD设,是非零实数,若,则下列不等式成立的是()3下列函数中,的最大值为的是() 4不等式的解集为 ( )A B C D5设f(x)为奇函数, 且在(-, 0)内是减函数, f(-2)= 0, 则x f(x)0时,f(x)1(1)求证f(x)是R上的增函数;(2)设f(3)=

10、4,解不等式f(a2+a-5)1)(1)证明:函数f(x)在(1,+)上为增函数;(2)用反证法证明方程f(x)=0没有负数根参考答案一、BD A C 二、670 7 8; 9 10三、11,因此()若,则收购站受益;()若,则两种方式的付款额相等;()若,则收购站吃亏12-1a1且13设楼房每平方米的平均综合费为f(x)元,则 当且仅当,即 时; 答:为了楼房每平方米的平均综合费最少,该楼房应建为15层14(1)(2)时,解集为;时, 解集为;时, 解集为15(2)-3a0, 1且0,0,又x1+10,x2+100,于是f(x2)f(x1)=+ 0f(x)在(1,+)上为递增函数(2)证法一

11、:设存在x00(x01)满足f(x0)=0,则,且由01得01,即x02与x00矛盾,故f(x)=0没有负数根证法二:设存在x00(x01)使f(x0)=0,若1x00,则2,1,f(x0)1与f(x0)=0矛盾,若x01,则0, 0,f(x0)0与f(x0)=0矛盾,故方程f(x)=0没有负数根高二数学选修11综合测试题一、 选择题(每小题5分,共60分)1、已知命题、,如果是的充分而不必要条件,那么是的( ) ( A )必要不充分条件 ( B )充分不必要条件 ( C )充要条件 ( D )既不充分也不必要2、命题“若,则是直角三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个

12、数是( ) ( A ) 0 ( B ) 1 ( C ) 2 ( D ) 33、一动圆的圆心在抛物线上,切动圆恒与直线相切,则动圆必定过点( )( A )(4,0) ( B ) (2,0) ( C ) (0,2) ( D ) (0,-2)4、抛物线上一点Q,且知Q点到焦点的距离为10,则焦点到准线的距离是( ) ( A ) 4 ( B ) 8 ( C ) 12 ( D ) 165、中心点在原点,准线方程为,离心率为的椭圆方程是( ) ( A ) ( B ) ( C ) ( D ) 6、若方程表示准线平行于轴的椭圆,则的范围是( ) ( A ) ( B ) ( C ) 且 ( D ) 且7、设过抛

13、物线的焦点的弦为,则以为直径的圆与抛物线的准线的位置关系( ) ( A ) 相交 ( B )相切 ( C ) 相离 ( D ) 以上答案均有可能8、如果方程表示双曲线,那么实数的取值范围是( ) ( A ) ( B ) 或 ( C ) ( D ) 或9、已知直线与曲线相切,则的值为( ) ( A ) ( B ) ( C ) ( D ) 10、已知两条曲线与在点处的切线平行,则的值为( ) ( A ) 0 ( B ) ( C ) 0 或 ( D ) 0 或 111、已知抛物线上一定点和两动点、,当时,点的横坐标的取值范围( ) ( A ) ( B ) ( C ) ( D ) 12、过双曲线的右焦

14、点且与右支有两个交点的直线,其倾斜角范围是( ) ( A ) ( B ) ( C ) ( D ) 二、填空题 (每小题4分,共16分)13、命题“a、b都是偶数,则a+b是偶数”的逆否命题是 。14、抛物线上一点到点与焦点的距离之和最小,则点的坐标为 。15、双曲线的离心率为,双曲线的离心率为,则的最小值为 。16、已知椭圆,为左顶点,为短轴端点,为右焦点,且,则这个椭圆的离心率等于 。二、 解答题 (1721每小题12分,22题14分)三、 17、已知抛物线通过点,且在处与直线相切,求、的值。18、点为抛物线上的动点, 为定点,求的最小值。19、已知椭圆的中心在原点,它在轴上的一个焦点与短轴

15、两端点连线互相垂直,切此焦点和轴上的较近端点的距离为,求椭圆方程。20、讨论直线与双曲线的公共点的个数。21、在直线上任取一点,过作以为焦点的椭圆,当在什么位置时,所作椭圆长轴最短?并求此椭圆方程XYOMBQPA22、如图,由围城的曲边三角形,在曲线弧上求一点,使得过所作的的切线与围城的三角形的面积最大。附参考答案一、选择题 1、B , 2、B, 3、B , 4、B , 5、C, 6、D , 7、 B , 8、D , 9、C , 10、 C , 11、 D, 12、 C四、 填空题13、若a+b不是偶数,则a、b都不是偶数。14、(1,2)15、解: 16、解:为直角三角形斜边上的高,则即 解

16、得 五、 解答题17、解:A(a,0)M(x,y)oFXY 则 又抛物线过点 则 点在抛物线上 解得18解:解: 根号下可看作关于的二次函数,这里若 时,若,时,19解:设椭圆的方程为, 根据题意 解得 椭圆的方程为 20、解:解方程组 消去得 当 , 时 当时 由 得 由 得 由 得或 综上知 : 时,直线与曲线有两个交点, 时,直线与曲线切于一点,时,直线与曲线交于一点。21、 分析:因为,即问题转化为在直线上求一点,使到 的距离的和最小,求出关于的对称点,即求到、的和最小,的长就是所求的最小值。解:设关于的对称点 XyFF1F2LMOM 则,连交于,点即为所求。: 即解方程组 当点取异于

17、的点时,。满足题意的椭圆的长轴所以 椭圆的方程为:22、解: 设 则 , 即 所以 令 则 令 则 令,则(舍去)或 即当时 导数专题一、 选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上) 1曲线在点处的切线方程为( )A B C D2已知函数的图象与轴有三个不同交点,且在,时取得极值,则的值为( )A4 B5 C6 D不确定3在上的可导函数,当取得极大值,当取得极小值,则的取值范围是( )A B C D4设,则( )A B C D5设,则( )A B C D6已知,则的值为( )A B C D不存在7函数在区间的值

18、域为( )A B C D8积分( )A B C D9由双曲线,直线围成的图形绕轴旋转一周所得旋转体的体积为( )A B C D10由抛物线与直线所围成的图形的面积是( )ABCD11设底面为等边三角形的直棱柱的体积为,则其表面积最小时,底面边长为( ) D12某人要剪一个如图所示的实心纸花瓣,纸花瓣的边界由六段全等的正弦曲线弧组成,其中曲线的六个交点正好是一个正六边形的六个顶点,则这个纸花瓣的面积为( )A BC D第卷(非选择题,共90分)二、填空题(每小题4分,共16分。请将答案填在答题卷相应空格上。)13曲线在点处的切线与轴、直线所围成的三角形的面积为,则_ 。14一点沿直线运动,如果由

19、始点起经过秒后的位移是,那么速度为零的时刻是_。15_.16 _。三、解答题:(本大题共5小题,共74分,解答应写出文字说明,证明过程或演算步骤)(17)(本小题满分10分)已知向量,若函数在区间上是增函数,求的取值范围。(18)(本小题满分12分)已知函数在处取得极值.(1)讨论和是函数的极大值还是极小值;(2)过点作曲线的切线,求此切线方程.(19)(本小题满分14分)设,求函数的最大值和最小值。(20)(本小题满分12分)用半径为的圆形铁皮剪出一个圆心角为的扇形,制成一个圆锥形容器,扇形的圆心角多大时,容器的容积最大?(21) (本小题满分12分) 直线分抛物线与轴所围成图形为面积相等的

20、两个部分,求的值.(22) (本小题满分14分)已知函数。 (1)若,且函数存在单调递减区间,求的取值范围。 (2)设函数的图象与函数的图象交于点,过线段的中点作轴的垂线分别交、于点。证明:在点处的切线与在点处的切线不平行。新课改高二数学选修2-2第一章导数及其应用测试题参考答案一、选择题:(本大题共10小题,每小题5分,共50分。)123456789101112BCABBCABBACB二、填空题:(本大题共4小题,每小题4分,共16分)(13)、 (14)、 (15)、 (16)、 三、解答题:(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)(17)(本小题满分10分)

21、解:由题意知:,则 (3分) 在区间上是增函数, 即在区间上是恒成立, (5分) 设,则,于是有 当时,在区间上是增函数 (8分) 又当时, ,在上,有,即时,在区间上是增函数当时,显然在区间上不是增函数 (10分)(18)(本小题满分12分) 解:(1),依题意, ,即 解得 (3分) ,令,得 若,则 故在上是增函数; 若,则 故在上是减函数; 所以是极大值,是极小值。 (6分) (2)曲线方程为,点不在曲线上。 设切点为,则 由知,切线方程为 (9分) 又点在切线上,有 化简得 ,解得 所以切点为,切线方程为 (12分)(19)(本小题满分14分)解: 令,得: (2分) 当变化时,的变

22、化情况如下表:单调递增极大值单调递减极小值单调递增 极大值为,极小值为 又,故最小值为0。 (6分)最大值与有关: (1)当时,在上单调递增,故最大值为: (8分) (2)由,即:,得: ,或 又,或 (10分) 当时,函数的最大值为: (12分)(3)当时,函数的最大值为: (14分)(20)(本小题满分12分) 解:设圆锥的底面半径为,高为,体积为,则 由,所以 ,令得 (6分) 易知:是函数的唯一极值点,且为最大值点,从而是最大值点。 当时,容积最大。 (8分) 把代入,得 由得 即圆心角时,容器的容积最大。 (11分)答:扇形圆心角时,容器的容积最大。 (12分) (21) (本小题满

23、分12分) 解:解方程组 得:直线分抛物线的交点的横坐标为 和 (4分) 抛物线与轴所围成图形为面积为 (6分) 由题设得 (10分) 又,所以,从而得: (12分) (22) (本小题满分14分) 解:(1)时,函数,且函数存在单调递减区间,有解。 (2分)又, 有 的解。 当时,为开口向上的抛物线,总有 的解; (4分) 当时,为开口向下的抛物线,而有 的解,则 ,且方程至少有一正根,此时, 综上所述,的取值范围为。 (7分)(2)设点,且,则 点的横坐标为,在点处的切线斜率为;在点处的切线斜率为。 (9分) 假设在点处的切线与在点处的切线平行,则,即 则 所以 (11分)设,则, 令,则

24、当时,所以在上单调递增。故,从而 这与矛盾,假设不成立,在点处的切线与在点处的切线不平行。 (14分)导数及其应用单元测试题(文科)(满分:150分 时间:120分钟)一、 选择题(本大题共10小题,共50分,只有一个答案正确)1函数的导数是( )(A) (B) (C) (D) 2函数的一个单调递增区间是( )(A) (B) (C) (D) 3已知对任意实数,有,且时,则时( )ABCD4若函数在内有极小值,则( )(A) (B) (C) (D) 5若曲线的一条切线与直线垂直,则的方程为( )A B C D6曲线在点处的切线与坐标轴所围三角形的面积为( )7设是函数的导函数,将和的图象画在同一

25、个直角坐标系中,不可能正确的是( )8已知二次函数的导数为,对于任意实数都有,则的最小值为( )A B C D9设在内单调递增,则是的()充分不必要条件必要不充分条件充分必要条件既不充分也不必要条件10 函数的图像如图所示,下列数值排序正确的是( ) (A) y (B) (C) (D) O 1 2 3 4 x 二填空题(本大题共4小题,共20分)11函数的单调递增区间是12已知函数在区间上的最大值与最小值分别为,则13点P在曲线上移动,设在点P处的切线的倾斜角为为,则的取值范围是 14已知函数(1)若函数在总是单调函数,则的取值范围是 . (2)若函数在上总是单调函数,则的取值范围 .(3)若

26、函数在区间(-3,1)上单调递减,则实数的取值范围是 .三解答题(本大题共4小题,共12+12+14+14+14+14=80分) 15用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?16设函数在及时取得极值(1)求a、b的值;(2)若对于任意的,都有成立,求c的取值范围17设函数分别在处取得极小值、极大值.平面上点的坐标分别为、,该平面上动点满足,点是点关于直线的对称点,.求()求点的坐标; ()求动点的轨迹方程. 18.已知函数(1)求曲线在点处的切线方程;(2)若关于的方程有三个不同的实根,求实数

27、的取值范围.19已知(1)当时,求函数的单调区间。(2)当时,讨论函数的单调增区间。(3)是否存在负实数,使,函数有最小值3?20已知函数,其中(1)若是函数的极值点,求实数的值;(2)若对任意的(为自然对数的底数)都有成立,求实数的取值范围【文科测试解答】一、选择题1;2, 选(A)3.(B)数形结合4.A由,依题意,首先要求b0, 所以由单调性分析,有极小值,由得.5解:与直线垂直的直线为,即在某一点的导数为4,而,所以在(1,1)处导数为4,此点的切线为,故选A6(D)7(D)8(C)9(B)10B设x=2,x=3时曲线上的点为AB,点A处的切线为AT点B处的切线为BQ,T y B A

28、如图所示,切线BQ的倾斜角小于直线AB的倾斜角小于 Q切线AT的倾斜角 O 1 2 3 4 x 所以选B 11 12321314. (1)三、解答题15. 解:设长方体的宽为x(m),则长为2x(m),高为.故长方体的体积为从而令V(x)0,解得x=0(舍去)或x=1,因此x=1.当0x1时,V(x)0;当1x时,V(x)0,故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值。从而最大体积VV(x)912-613(m3),此时长方体的长为2 m,高为1.5 m.答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为3 m3。16解:(1),因为函数在及取

29、得极值,则有,即解得,(2)由()可知,当时,;当时,;当时,所以,当时,取得极大值,又,则当时,的最大值为因为对于任意的,有恒成立,所以,解得或,因此的取值范围为17解: (1)令解得当时, 当时, ,当时,所以,函数在处取得极小值,在取得极大值,故,所以, 点A、B的坐标为.(2) 设,所以,又PQ的中点在上,所以消去得.另法:点P的轨迹方程为其轨迹为以(0,2)为圆心,半径为3的圆;设点(0,2)关于y=2(x-4)的对称点为(a,b),则点Q的轨迹为以(a,b),为圆心,半径为3的圆,由,得a=8,b=-218解(1) 2分曲线在处的切线方程为,即;4分(2)记令或1. 6分则的变化情

30、况如下表极大极小当有极大值有极小值. 10分由的简图知,当且仅当即时,函数有三个不同零点,过点可作三条不同切线.所以若过点可作曲线的三条不同切线,的范围是.14分19(1)或递减; 递增; (2)1、当递增;2、当递增;3、当或递增; 当递增;当或递增;(3)因由分两类(依据:单调性,极小值点是否在区间-1,0上是分类“契机”:1、当 递增,解得2、当由单调性知:,化简得:,解得不合要求;综上,为所求。20(1)解法1:,其定义域为, 是函数的极值点,即 , 经检验当时,是函数的极值点, 解法2:,其定义域为, 令,即,整理,得,的两个实根(舍去),当变化时,的变化情况如下表:0极小值依题意,

31、即, (2)解:对任意的都有成立等价于对任意的都有 当1,时,函数在上是增函数 ,且,当且1,时,函数在1,上是增函数,.由,得,又,不合题意 当1时,若1,则,若,则函数在上是减函数,在上是增函数.由,得,又1, 当且1,时,函数在上是减函数.由,得,又,综上所述,的取值范围为数列专题例1解答下述问题:()已知成等差数列,求证:(1)成等差数列;(2)成等比数列.解析该问题应该选择“中项”的知识解决,()设数列(1)求证:是等差数列;(2)若数列求证:是等比数列.解析(1)得1)当2)由1)、2)知,评析判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归纳猜想”并证明.例2解答下述问题:()等差数列的前n项和为求解析选择公式做比较好,但也可以考虑用性质完成.解法一设得:解法二不妨设()等比数列的项数n为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为,求项数n.解析设公比为()等差数列an中,公差d0,在此数列中依次取出部分项组成的数列

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁