习题集2ppt课件.ppt

上传人:豆**** 文档编号:52876477 上传时间:2022-10-24 格式:PPT 页数:89 大小:1.40MB
返回 下载 相关 举报
习题集2ppt课件.ppt_第1页
第1页 / 共89页
习题集2ppt课件.ppt_第2页
第2页 / 共89页
点击查看更多>>
资源描述

《习题集2ppt课件.ppt》由会员分享,可在线阅读,更多相关《习题集2ppt课件.ppt(89页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、习题集2ppt课件 Still waters run deep.流流静静水深水深,人人静静心深心深 Where there is life,there is hope。有生命必有希望。有生命必有希望第二章 标量衍射理论1.亥姆霍兹基尔霍夫积分定理2.平面屏衍射的菲涅尔、索末菲衍射积分公式3.菲涅尔衍射与夫琅禾费衍射的计算4.薄透镜的傅里叶变换性质(频谱面上物的频谱计算)第三章 光学成像系统的频谱分析1.相干、非相干照明实空间和谱空间成像公式2.相干传递函数和光学传递函数的定义及计算3.相干照明和非相干照明的比较第四章 光学信息处理1.几种光学成像系统的结构及功能分析2.傅里叶频谱滤波运算第五章

2、 光学全息术1.记录与重建2.基元全息的成像理论分析3.傅里叶变换全息的分析第六章 部分相干理论1.实函数的解析表示及频谱间的关系2.互相干函数、复相干度、互强度、复相干因子的定义3.干涉光场的强度分布及可见度与上述参数的关系3.范西特泽尼克定理的应用习题集第一章 现代光学的数理基础课件上的课件上的1515个例题个例题第二章 现代光学的数理基础课件上夫琅禾费衍射课件上夫琅禾费衍射5 5个例题、个例题、菲涅尔衍射菲涅尔衍射4 4个例题个例题 1.基基尔霍夫衍射公式中,同霍夫衍射公式中,同时对光光场和其法向和其法向导数施数施加了加了边界条件,从而界条件,从而导致了理致了理论本身的不自洽性。本身的不

3、自洽性。索末菲索末菲选用了新的格林函数,使新的格林函数或其用了新的格林函数,使新的格林函数或其导数在数在衍射孔径面衍射孔径面上上为零,零,这时就不必同就不必同时对光光场和其法向和其法向导数数施加施加边界条件。界条件。2.如果如果选择格林函数格林函数为 3.若用一若用一单位振幅的位振幅的单色平面波垂直照明如下色平面波垂直照明如下图所所示的方形示的方形环带,试导出出该方形方形环带的夫琅和的夫琅和费衍射的衍射的表达式。表达式。4.若衍射孔径的透射率函数分若衍射孔径的透射率函数分别为 采用采用单位振幅的位振幅的单色平面波垂直照明上述孔径,求菲涅耳色平面波垂直照明上述孔径,求菲涅耳衍射衍射图样在孔径在孔

4、径轴上的上的强度分布。度分布。第六章 部分相干理论课件上准单色圆形光源光场的课件上准单色圆形光源光场的相干性例题相干性例题20 1.1.在如下图所示的杨氏干涉实验中,采用逢宽为在如下图所示的杨氏干涉实验中,采用逢宽为a的准单的准单色缝光源,辐射光强均匀分布为色缝光源,辐射光强均匀分布为I0,中心波长中心波长 =600=600 nm。试求:试求:1.写出写出Q1和和Q2点的复相干系数;点的复相干系数;2.若若a=0.1mm,z=1m,d=3mm 求出求出观观察屏察屏上上杨杨氏干涉条氏干涉条纹纹的可的可见见度;度;3.若若z和和d仍取仍取上上述述值值,要求,要求观观察屏察屏上上的可的可见见度度为为

5、0.41,逢光源的,逢光源的宽宽度度a 应应为为多少?多少?a光源dxQ1Q2z观察屏解:(1)应用范西泰特-策尼克定理可求出 Q1和Q2点的复相干系数。因双逢到光 轴等距(=0),光源是一维分布,于是所以Q1和Q2点的复相干系数为(2)在观察屏上观察道的干涉条纹的可见度由 Q1和Q2点的复相干系数的模决定,即(3)若要求查表可知即:第五章 光学全息术第四章 光学信息处理第三章 光学成像系统的频谱分析1.求光瞳函数具有如下形式的光学系统的相干传递函数和相应的截止频率。解:相干传递函数截止频率 2.求光瞳函数具有如下形式的光学系统的相干传递函数和相应的截止频率。解:相干传递函数截止频率 3.设光

6、学系统的光瞳函数为正方形:求该系统的OTF和截止频率。解:总面积 重叠面积额 OTF截止频率 4.设光学系统的光瞳函数为圆形:求该系统的OTF和截止频率。解:总面积 重叠面积额 OTF截止频率 5.已知光学成像系统的相干传递函数为 ,该系统对振幅透射率为的一维光栅进行成像,试求在相干和非相干照明两种情况下像的强度频谱,并比较两种情况下成像效果的优劣。解:相干和非相干情况下成像系统的物像关系为 相干:非相干:相应的像的强度频谱相干:非相干:相干:非相干:两种照明情况下,像强度频谱的直流分量相同,但频率为 的频率分量的幅度,相干照明比非相干照明要大些,因此相干照明成像的对比度要大,从这个意义上讲,

7、相干成像比非相干成像质量要好。6.一个非相干成像系统的光瞳是一个边长为2a的等边三角形,如图所示,求这个系统在空间频率域中沿fx轴和fy轴的OTF。解:(1)沿fx方向:总面积 重叠面积:OTF:(2)沿fy方向重叠面积:OTF:7.一个非相干系统,其光瞳函数为图中所示的圆形孔径,画出它的光学传递函数沿fx轴和fy轴的截面图(要标明各个截止频率的值)。已知半径为w的圆形光瞳的OTF为:解:(1)fx方向的OTF 由右图可知,在fx方向光瞳的重叠面积为光瞳是单个圆形情况时的重叠面积的2倍,同时总面积也为光瞳是单个圆形时的2倍,因此OTF和光瞳为单个圆形时的OTF完全相同:(2)fy方向的OTF

8、当 时,情况和fx方向的情况完全相同,因此 当 面积为零,因此OTF为0;时,重叠时,当 重叠面积为:OTF为:当 为0,因此OTF为0。时,重叠面积光瞳的光学传递函数沿fx轴和fy轴的截面图:8.一个正弦型振幅光栅的振幅透过率为:放在一个直径为l的圆形会聚透镜(焦距为f)之前,并且用平面单色光波倾斜照明。平面波的传播方向在x0Oz 平面内,与z轴夹角为,如图所示。(1)求通过物透射的光的振幅分布的频谱。(2)假定d0=di=2f,问像平面上会出现强度变化的角最大值是多少?(3)假定用的倾斜角就是这个最大值,求像平面上的强度分布。它与=0时相应的强度分布比较,情况如何?解:(1)倾斜单色平面波

9、入射,在物平面产生的入射光场为,则物平面的透射场为:其频谱为:由此可见,当光波以角倾斜入射,物频谱沿fx轴整体平移了 的距离。(2)物的空间频谱仅包含3个频谱分量,其中每一频谱分量代表某一特定方向的平面波,如果只让一个频谱分量通过系统,像面是不会有强度变化的。欲使像面有强度变化,至少要两个频谱分量通过系统。选择最低的两个频谱分量使其在系统通频带内,角才能取尽量大的值。图示系统,透镜能通过的最高频率为 。因此,要求即 所以(3)当=max时,只有两个低频分量通过,像的频谱为:像面复振幅分布:强度分布:当=0时,因d0=di=2f,所以像面光场分布和物光场分布相同,故像面光强分布为:对比可发现,当

10、=max时的条纹对比度较差,且没有倍频成分。9.一张全息图用氩离子激光器发出的波长为488nm的激光记录,而用氦氖激光器的波长为632.8nm的光重建。(1)zp=,zr=,z0=10cm,两个孪生像沿轴向的像距是多少?两个像的横向放大率和轴向放大率是多少?(2)zp=,zr=2z0,z0=10cm,两个孪生像沿轴向的像距是多少?两个像的横向放大率和轴向放大率是多少?解:(1)根据全息图物像关系公式 代入相应的数据可得(2)将数据代入全息图物像关系公式可得10.一张全息图,记录和重建像的波长同为。假设z00,证明当zp=zr时,得到一个横向放大率为1的虚像;而当zp=-zr时,得到一个横向放大

11、率为1的实像。在每种情况下,其孪生像的横向放大率为多少?证明:依题意=1,根据公式当zp=zr时:对第一个像,zi=z00,像和物在全息片的同一侧,M=1,即像为横向放大率为1的虚像,其孪生像为第二个像,横向放大率就是 当zp=-zr时:对第二个像,zi=-z00,像在全息图的右侧,为实像,横向放大率为1。它的孪生像为第一个像,横向放大率为 11.用下式证明在不存在波长失配的情况下,当物光波和参考光波成900角时,体光栅的角度选择性达到极大值。证明:不存在波长失配时,失配参数光栅矢量的模K为:为记录形成体光栅时参考光和物光波矢间的夹角。布拉格条件:即 是入射波矢与光栅平面的夹角,由图可知失配参

12、数:因此,当记录时物光和参考光的夹角=900时,体光栅的角度选择性达到极大值。12.一个振幅透过率为的光栅,放在标准的4f相干光处理系统的输入平面上。定出一个能够完全消除输出强度中空间频率为f0的空间频率分量的纯相位型的空间滤波器的传递函数(作为fx的函数)。假设用单色平面波照明,并忽略透镜有限孔径的影响。解:假设纯相位型的空间滤波器的传递函数为 滤波后4f系统像面上的光场分布为:光强为:其中只有第二和第三项的空间频率为f0,要消除这两项,需满足:即 也就是设计的纯位相型滤波器,只要在fx=0、f0、-f0三个点处满足上述关系,就可实现在像面上消除空间频率为f0的部分。我们可以使 13.用Va

13、nderLugt方法合成一个频率平面滤波器,如下图(a)所示,一个振幅透过率为s(x,y)的“信号”透明片紧贴着放在一个会聚透镜的前面,用照相底片记录后焦面上的强度,并使显影后底片的振幅透过率正比于曝光量。把这样制得的透明片放在下图(b)所示的系统中,假定在下述每种情况下考查输出平面的适当部位,问输入平面和第一个透镜之间的距离d应为多少,才能综合处:(1)脉冲响应为s(x,y)的滤波器?(2)脉冲响应为s*(x,y)的“匹配”滤波器?解:在记录时,胶片上的合光场为 在线性记录条件下,经显影、定影后的胶片的振幅透过率为:在图(b)所示4f系统中,以点光源(x1,y1)作为输入,在透镜L1后焦面形

14、成的光场分布为:则透过滤波器的光场分布为:(1)要合成出脉冲响应为s(x,y)的滤波器,只需使上式中的第三项分离出来且前面的二次位相因子为0即可,即 因此 这种情况下4f系统的输出:(2)同(1),只需第四项分离出来且前面的二次位相因子为0即可,即因此 这种情况下4f系统的输出14.振幅透过率为h(x,y)和g(x,y)的两张输入透明片放在一个会聚透镜之前,其中心位于坐标(x=0,y=Y/2)和(x=0,y=-Y/2)上,如图所示,把透镜后焦面上的强度分布记录下来,由此制得一张=2的正透明片。把显影、定影后的正透明片放在同一透镜前,再次进行变换。试证明透镜的后焦面上的光场振幅含有h和g的互相关

15、,并说明在什么条件下,互相关项可以从其他输出分量中分离出来。解:输入函数可写成 透镜L2后焦面的光场分布:记录介质上的光强分布为:依题意,经显影定影后的胶片的振幅透过率正比于它接收的光强:将该透明片放置于透镜之前,经傅里叶变化后,透镜后焦面的光场分布为:设Wh 表示 h 在y3方向的宽度,Wg表示 g在y3方向 的宽度,上式各项在x3Oy3平面的位置如图所示:上式后两项以卷积的形式表示h和g的互相关,要使该两项能够分离出来,由图示几何关系可知,必须使:15.在照相时,若相片的模糊只是由于物体在曝光过程中的匀速直线运动造成的,运动的结果使像点在底片上的位移为0.5mm。试写出造成模糊的点扩展函数

16、h(x,y);如果要对该照片进行消模糊处理,试写出逆滤波器的透过率函数。解:由于物体做匀速运动,一个点便模糊成了一条线。依题意,用点光源照明时,在物体运动的方向上(设为x),像变成了一个长度为0.5mm的线,因此点扩散函数可写成(归一化条件下):而相应的传递函数为:要对该相片进行消模糊,则可取逆滤波器的滤波函数为:16.设某滤波器的滤波函数为H(fx)=afx,将其放在4f系统的频谱面上。试证明:这时在像平面上将得到物平面上物函数的微分。证明:设物函数为g(x),其在4f系统滤波平面上的频谱分布为:通过滤波器后的场分布为:系统像面上的场分布为:即在像平面上显现的是物函数分布的微分。17.如图所

17、示为一光学成像系统,S为点光源,输入函数为g(x1,y1),放置在系统的P1平面,振幅透过率为H(x2,y2)的滤波器放置在P2平面上。试写出透镜L1前的光场分布Ul1(x1,y1),P1平面后的光场分布Up1(x1,y1),透镜L2前的光场分布Ul2(x2,y2),P2平面后的光场分布Up2(x2,y2),及输出面P3平面上的光场分布Up3(x3,y3)。S解:点光源发出的发散球面波到达L1前,其分布为:焦距为f的透镜的位相变换作用为 ,因此P1平面后的光场分布为:根据菲涅尔衍射公式,光从P1平面传播到透镜L2前的振幅分布为:经过透镜L2的位相变换,光穿过滤波器H后,在P2平面后的振幅分布为:再次根据菲涅尔衍射公式,光从P2平面传播到P3平面的振幅分布为:18.如图所示,焦距为f的透镜对其左边距离为p的点源S成像,像距为q。当一振幅透过率为g(x0,y0)的透明片竖直放于于透镜前f处时,求此时像平面上的光场分布?(已知 )解:点光源S发出的球面波在透明片前的光场分布为:透过透明片的光场为:根据菲涅尔衍射公式,透过透明片的光场传播到透镜前,其振幅分布变为:焦距为f的透镜的位相变换作用为 ,因此透镜后的光场分布为:再次根据菲涅尔衍射公式,透镜后的光场传播距离q到达像面上的振幅分布为:由透镜成像公式:可得因此

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁