《必修2-1.3空间几何体表面积、体积知识点(共6页).doc》由会员分享,可在线阅读,更多相关《必修2-1.3空间几何体表面积、体积知识点(共6页).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上必修2 1.3空间几何体的表面积、体积例1 已知棱长为a,各面均为等边三角形的四面体SABC(图6),求它的表面积.图6分析:由于四面体SABC的四个面是全等的等边三角形,所以四面体的表面积等于其中任何一个面面积的4倍.解:先求SBC的面积,过点S作SDBC,交BC于点D.因为BC=a,SD=,所以SSBC=BC·SD=.因此,四面体SABC的表面积S=4×.变式训练1.已知圆柱和圆锥的高、底面半径均分别相等.若圆柱的底面半径为r,圆柱侧面积为S,求圆锥的侧面积.解:设圆锥的母线长为l,因为圆柱的侧面积为S,圆柱的底面半径为r,即S圆柱侧=S,根据
2、圆柱的侧面积公式可得:圆柱的母线(高)长为,由题意得圆锥的高为,又圆锥的底面半径为r,根据勾股定理,圆锥的母线长l=,根据圆锥的侧面积公式得:S圆锥侧=rl=·r·.2.两个平行于圆锥底面的平面将圆锥的高分成相等的三段,那么圆锥被分成的三部分的体积的比是( )A.123 B.1719 C.345 D.1927分析:因为圆锥的高被分成的三部分相等,所以两个截面的半径与原圆锥底面半径之比为123,于是自上而下三个圆锥的体积之比为()·2h·3h=1827,所以圆锥被分成的三部分的体积之比为1(81)(278)=1719.答案:B3.三棱锥VABC的中截面是A
3、1B1C1,则三棱锥VA1B1C1与三棱锥AA1BC的体积之比是( )A.12 B.14 C.16 D.18分析:中截面将三棱锥的高分成相等的两部分,所以截面与原底面的面积之比为14,将三棱锥AA1BC转化为三棱锥A1ABC,这样三棱锥VA1B1C1与三棱锥A1ABC的高相等,底面积之比为14,于是其体积之比为14.答案:B例2 如图7,一个圆台形花盆盆口直径为20 cm,盆底直径为15 cm,底部渗水圆孔直径为1.5 cm,盆壁长为15 cm.为了美化花盆的外观,需要涂油漆.已知每平方米用100毫升油漆,涂100个这样的花盆需要多少毫升油漆?(取3.14,结果精确到1毫升)图7解:如图7,由
4、圆台的表面积公式得一个花盆外壁的表面积S=-()21 000(cm2)=0.1(m2).涂100个这样的花盆需油漆:0.1×100×100=1 000(毫升).答:涂100个这样的花盆需要1 000毫升油漆.变式训练1.有位油漆工用一把长度为50 cm,横截面半径为10 cm的圆柱形刷子给一块面积为10 m2的木板涂油漆,且圆柱形刷子以每秒5周的速度在木板上匀速滚动前进,则油漆工完成任务所需的时间是多少?(精确到0.01秒)解:圆柱形刷子滚动一周涂过的面积就等于圆柱的侧面积,圆柱的侧面积为S侧=2rl=2·0.1·0.5=0.1 m2,又圆柱形刷子以每秒
5、5周匀速滚动,圆柱形刷子每秒滚过的面积为0.5 m2,因此油漆工完成任务所需的时间t=6.37秒.2.已知三棱锥OABC中,OA、OB、OC两两垂直,OC=1,OA=x,OB=y,且x+y=4,则三棱锥体积的最大值是_.分析:由题意得三棱锥的体积是(x-2)2+,由于x0,则当x=2时,三棱锥的体积取最大值.答案:例3 有一堆规格相同的铁制(铁的密度是7.8 g/cm3)六角螺帽(图8)共重5.8 kg,已知底面是正六边形,边长为12 mm,内孔直径为10 mm,高为10 mm,问这堆螺帽大约有多少个?(取3.14)图8解:六角螺帽的体积是六棱柱体积与圆柱体积的差,即V=×122
6、215;6×10-3.14×()2×102 956(mm3)=2.956(cm3).所以螺帽的个数为5.8×1 000÷(7.8×2.956)252(个).答:这堆螺帽大约有252个.变式训练 如图9,有个水平放置圆台形容器,上、下底面半径分别为2分米,4分米,高为5分米,现以每秒3立方分米的速度往容器里面注水,当水面的高度为3分米时,求所用的时间.(精确到0.01秒)图9解:如图10,设水面的半径为r,则EH=r-2分米,BG=2分米,图10在ABG中,EHBG,.AH=2分米,.r=分米.当水面的高度为3分米时,容器中水的体积为V
7、水=·3()2+×4+42=立方分米,所用的时间为36.69秒.答:所用的时间为36.69秒.自我测试1.正方体的表面积是96,则正方体的体积是( )A. B.64 C.16 D.96分析:设正方体的棱长为a,则6a2=96,解得a=4,则正方体的体积是a3=64.答案:B2.如图19所示,圆锥的底面半径为1,高为,则圆锥的表面积为( )A. B.2 C.3 D.4分析:设圆锥的母线长为l,则l=2,所以圆锥的表面积为S=×1×(1+2)=3.答案:C3.正三棱锥的底面边长为3,侧棱长为,则这个正三棱锥的体积是( )A. B. C. D.分析:可得正三棱
8、锥的高h=3,于是V=.答案:D4.若圆柱的高扩大为原来的4倍,底面半径不变,则圆柱的体积扩大为原来的_倍;若圆柱的高不变,底面半径扩大为原来的4倍,则圆柱的体积扩大为原来的_倍.分析:圆柱的体积公式为V圆柱=r2h,底面半径不变,高扩大为原来的4倍,其体积也变为原来的4倍;当圆柱的高不变,底面半径扩大为原来的4倍时,其体积变为原来的42=16倍.答案:4 165.图20是一个正方体,H、G、F分别是棱AB、AD、AA1的中点.现在沿GFH所在平面锯掉正方体的一个角,问锯掉部分的体积是原正方体体积的几分之几?图20分析:因为锯掉的是正方体的一个角,所以HA与AG、AF都垂直,即HA垂直于立方体
9、的上底面,实际上锯掉的这个角,是以三角形AGF为底面,H为顶点的一个三棱锥.解:设正方体的棱长为a,则正方体的体积为a3. 三棱锥的底面是RtAGF,即FAG为90°,G、F又分别为AD、AA1的中点,所以AF=AG=.所以AGF的面积为.又因AH是三棱锥的高,H又是AB的中点,所以AH=.所以锯掉的部分的体积为.又因,所以锯掉的那块的体积是原正方体体积的.6.已知一圆锥的侧面展开图为半圆,且面积为S,则圆锥的底面面积是_.分析:如图21,设圆锥底面半径为r,母线长为l,由题意得解得r=,所以圆锥的底面积为r2=.图21答案:7.如图22,一个正三棱柱容器,底面边长为a,高为2a,内装水若干,将容器放倒,把一个侧面作为底面,如图23,这时水面恰好为中截面,则图22中容器内水面的高度是_. 图22 图23分析:图22中容器内水面的高度为h,水的体积为V,则V=SABCh.又图23中水组成了一个直四棱柱,其底面积为,高度为2a,则V=·2a,h=.答案:8.圆台的两个底面半径分别为2、4,截得这个圆台的圆锥的高为6,则这个圆台的体积是_.分析:设这个圆台的高为h,画出圆台的轴截面,可得,解得h=3,所以这个圆台的体积是(22+2×4+42)×3=28.答案:28专心-专注-专业