勾股定理的应用说课稿(共8页).doc

上传人:飞****2 文档编号:5258741 上传时间:2021-12-15 格式:DOC 页数:8 大小:34KB
返回 下载 相关 举报
勾股定理的应用说课稿(共8页).doc_第1页
第1页 / 共8页
勾股定理的应用说课稿(共8页).doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《勾股定理的应用说课稿(共8页).doc》由会员分享,可在线阅读,更多相关《勾股定理的应用说课稿(共8页).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上勾股定理的应用说课流程一、教材分析 二、目标分析 三、教法学法分析 四、教学过程分析 五、评价分析一. 教材分析1.教材的地位和作用:勾股定理在日常生活中有着非常重要而广泛的应用,因此它是整个初中数学的一个重点。本节课是在人教版义务教育课程标准实验教科书·数学八年级下册“勾股定理”一章新授课全部结束的基础上设计的一节探究课。对“勾股定理”一章来说,从数学课程标准的要求到教材内容的设置,起点都比较低主要表现在两方面:一方面表现在知识点少,即仅有勾股定理及勾股定理逆定理两个知识点;另一方面能力要求单一,即运用勾股定理解决简单的实际问题。因此为了提高学生质疑、发现

2、、解决问题的能力,根据学生的实际情况,利用教材资源和学生的智慧设计本节课的内容。在本节课中,通过丰富的情境,使学生更深刻地体会勾股定理在现实生活中的应用。为后面的学习打下良好的基础。2.教学重点:运用勾股定理解决数学和实际问题3.教学难点:把实际问题转为数学问题,利用勾股定理解决二. 教学目标:知识目标:能进一步运用勾股定理的数学模型解决现实世界的实际问题 能力目标:1.通过对实际问题的分析与解决,通过学生动手操作,培养学生的探究能力、质疑能力,提高用数学知识来解决实际问题的能力.2.帮助学生感受到数学与现实生活的联系,情感目标: 1.体验数学学习的乐趣,形成积极参与数学活动的意识,再一次感受

3、勾股定理的应用价值,锻炼克服困难的意志,建立自信心。 2.培养学生交流与合作的协作精神三.教法学法分析:1、学情分析本节课的教学对象是八年级学生,他们的参与意识强,思维活跃,对于真实情境及现实生活中的数学问题具有极大的学习兴趣,而且在前面的学习中,学生已经历了探索和验证勾股定理的过程,又通过观察、操作、思考,充分认识了勾股定理的本质特征,并在此过程中,获得了初步的数学活动经验和体验,具备了一定的动手操作、合作交流和观察、分析的能力。初步具备了有条理地思考与表达的能力。 2、教法与学法分析(1)教法分析:采用 “以学生为主体,以问题为中心,以活动为基础,以培养学生提出问题和解决问题为目标”的方法

4、进行探索讨论法问题情境建立模型解决问题(2)学法分析:根据学生的学情,本节课,我从学生已有的知识基础和生活经验出发,创设生动有趣的学习情境,本着疑难让学生议,思路让学生想,错误让学生析,规律让学生找,小结让学生讲的原则,在教学方法的设计上,把重点放在了探究构建数学模型的过程上,激发学生对数学学习的兴趣。四.教学过程分析:复习引入探究活动布置作业小结归纳实例引入如图,将长2.5米的梯子AC斜靠在竖直的墙上,梯子底端C与墙的水平距离BC的长为1.5米。求梯子上端A到墙的底边的垂直距离AB。解决本问题需用到勾股定理,引出本节课题。引申一、若梯子底端C在水平方向向右移动0.5米,它的上端点A在竖直方向

5、下滑了多少米?本问题出自课本,学生不难得出结果,但是,经过计算梯子底端C在水平方向向右移动的距离与上端点A在竖直方向下滑的距离相等,这个结论是否具有一般性呢?引申二、若CC等于0.6米,你认为线段AA等于多少呢?通过计算,AA和 CC不相等,所以引申一的结论只是巧合,不是必然。小 结解决此问题的关键在于明确墙面与地面始终垂直,梯子滑动的过程中长度保持不变,滑动前后分别构成两个直角三角形,利用勾股定理便可将问题解决。利用勾股定理解决问题的关键是找直角三角形。设计意图:本题是对教材原问题的复习巩固,也是对教材例题的继续与延伸,通过对梯子底端滑动距离与梯子顶端下滑距离的关系的探究,让学生明白仅仅看到

6、事物的表面还不能下结论,需要在实践中验证 自己的判断。开始今天的探究之旅探究活动1矩形纸片ABCD的长为10,宽为8,把它沿AE折叠, 点D恰好落在BC上的点F处,则EC等于( )让学生拿出课前准备的长10厘米,宽8厘米的矩形纸片,课堂上动手操作,得出解题方法和思路。同时教师巡视,帮助学困生,并给予及时点拨。设计意图:1、渗透方程思想2、突出勾股定理在折叠中的应用探究活动2古代问题:九章算术: 今有方池一丈, 葭生其中央, 出水一尺, 引葭赴岸, 适与岸齐。 问:水深、葭长各几何?让古文好的学生翻译成现代文,共同分析已知条件。然后引导学生用多种方法解决,教师听了学生的方法后,展示规范的解题步骤

7、注意:解决上面问题的关键是: (1)根据实际问题建立数学模型(直角三角形)(2)根据勾股定理建立方程模型设计意图:1、这是一道我国古代数学著作中记载的一个有趣问题,通过对这个问题的讨论,学生可以进一步认识勾股定理的悠久历史和广泛应用,及时对学生进行爱国主义教育2、渗透方程思想探究活动3小明村里有一底面周长为8m,高为3m的圆柱形油罐,一天他发现一只聪明的老鼠从A处爬行到对角B处吃食物,你知道小明为什么说那是只聪明的老鼠吗?(从爬行路线考虑) 试求出这条最短路线的长度?解此题需画出圆柱的侧面展开图,B在矩形一边的中点,线段AB的长度即最短距离变式一有一个圆柱体礼盒,高为15厘米,底面周长为40厘

8、米,准备在礼盒表面粘贴彩带作为装饰。若彩带一端粘在点A处,另一端绕礼盒侧面一周后粘贴在点C处,你认为至少需要多少彩带呢?画出圆柱的侧面展开图,即求矩形对角线的长。变式二有一个圆柱体礼盒,高为15厘米,底面周长为40厘米,准备在礼盒表面粘贴彩带作为装饰。若彩带一端粘在点A处,另一端绕礼盒侧面两周后粘贴在点C处,你认为至少需要多少彩带呢?本题具有一定的难度,所以让学生拿出预先作好的高为15厘米,底面周长为40厘米的圆柱,利用手中的模型,先独立思考,再以小组为单位讨论、探究变式二中共需多少彩带。教师参与部分小组讨论,及时发现问题,视情况及时点拨。最后得出有两种解法,这两种解法都需将圆柱分成两个相等的

9、圆柱。最后教师展示计算方法。小 结把几何体适当展开成平面图形,再利用“两点之间线段最短” 等性质来解决问题是勾股定理的一大应用。设计意图:将立体图形问题转化为平面图形问题解决,渗透了转化思想。变式二中,需对彩带过母线中点和不过母线中点这两种侧面展开图进行 比较、探究。这样,不仅能展现学生 的数学才能,还能大大促进学生数学能力的提高。小结归纳本节课你有还有哪些问题?本节课你有哪些收获?作业:必做:出10道勾股定理的应用题,给你的同桌做,再交换批改,交上来选做:有一个圆柱体礼盒,高为15厘米,底面周长为40厘米,准备在礼盒表面粘贴彩带作为装饰。若彩带一端粘在点A处,另一端绕礼盒侧面三周后粘贴在点C

10、处,你认为至少需要多少彩带呢?改为绕四周、绕五周绕n周呢?设计意图:作业有必做题和选做题,使不同程度的学生能得到不同的发展。让学困生吃得了,学优生吃得饱。板书设计五.教学评价分析:本节课从以下几个方面进行教学评价:1. 反映学生数学学习的成就和进步2. 诊断学生在学习中存在的困难,及时调整和改善教学过程3. 全面了解学生数学学习的历程,帮助学生认识到自己在解题策略、思维或习惯上的长处和不足:使学生形成对数学积极的态度、情感和价值观,帮助学生认识自我,树立信心4. 课后学生完成自我评价表自我评价表项目 123说明知识技能掌握情况(利用勾股定理解决问题)1参与有关的活动 2初步理解 3真正理解并掌握 积极(举手发言、提出问题并讨论与交流以及阅读课外读物)1经常 2一般 3很少 是否自信(提出和别人不同的问题、大胆尝试并表达自己想法)1经常 2一般 3很少是否善于与人合作(听别人意见、积|极表达自己的意见)1经常 2一般 3很少思维的条理性(能有条有理表达自己的意见、解决问题的过程清楚、做事有计划) 1经常 2一般 3很少思维的创造性(用不同方法解决问题、独立思考) 1经常 2一般 3很少专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 教育教学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁