加法原理和乘法原理教案设计.pdf

上传人:赵** 文档编号:52503614 上传时间:2022-10-23 格式:PDF 页数:4 大小:95.28KB
返回 下载 相关 举报
加法原理和乘法原理教案设计.pdf_第1页
第1页 / 共4页
加法原理和乘法原理教案设计.pdf_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《加法原理和乘法原理教案设计.pdf》由会员分享,可在线阅读,更多相关《加法原理和乘法原理教案设计.pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、加法原理和乘法原理教案设计【教学目的】【教学目的】1.使学生理解和掌握加法原理和乘法原理并能准确、熟练地运用两个基本原理。2.加强对学生思维条理性的训练,培养学生分析问题、解决问题的能力。【教学重点和难点】【教学重点和难点】重点是两个基本原理的应用,难点是对两个基本原理的准确理解。【教学过程】【教学过程】一、讲授新课一、讲授新课加法原理和乘法原理是有关排列、组合问题所遵循的两条基本原理,深入理解和准确运用这两个原理是学好排列、组合这一单元的重要一环。请同学们考虑下面两个问题:问题问题 1 1从甲地到乙地,旱路有 3 条,水路有 2 条,间从甲地到乙地共有多少种不同的走法?从图中很容易找到答案:

2、从甲地到乙地共有 5 种不同的走法。问题问题 2 2由 A 村到 B 村的路有 3 条,由 B 村到 C 村的路有 2 条,问从 A 村经过 B 村到达 C 村共有多少种不同的走法?从图中不难看出此题的答案是:共有 6 种不同的走法。我们从上面两个问题中可以抽象出一般性的规律,得出以下的结论:(一)完成一件工作的两种不同的方式。问题 1 和问题 2 的共同之处在于:它们都是在研究做一件事(或工作)完成它共有多少种不同的方法?这两个问题的不同点是完成工作的方式不同。问题 1 中的每条旱路或水路都可以从甲地直接到达乙地,其中旱路和水路只不过是完成从甲地到乙地这件工作的两类不同的办法。问题 2 中的

3、从 A 村到 B 村的 3 条路和从 B 村到 C 村的 2 条路的任意一条路都不能把从 A 村经过 B 村到达 C 村这件工作做完,只能完成这件工作的一部分。问题 2 中的工作是分两个步骤完成的:第一步从 A村到达 B 村,第二步从 B 村到达 C 村。我们不难总结出:完成一件工作有以下两种不同的方式:第 1 页第一种方式:用不同类的办法去完成一件工作,每类办法中的任意一种方法都可以从头至尾把这件工作做完。第二种方式:分成几个步骤去完成一件工作,每个步骤中的任意一种方法只能完成这件工作的一部分,这几个步骤都完成了,这件工作才能做完。(二)加法原理和乘法原理。下面我们来研究:完成一件工作的不同

4、方法的总数怎样计算:问题 1 的答案是共有 5 种不同的走法,已知旱路 3 条,水路 2 条,显然 5=3+2。问题 2 的答案是共有 6 种不同的走法,已知从 A 村到 B 村 3 条路,从 B 村到 C 村 2 条路,显然 6=32。总结一般规律如下:加法原理加法原理做一件事,完成它有n类办法,其中第一类办法中有m1种方法,第二类中有m2种方法,第 n 类办法中有 mn种方法,那么完成这件事共有 N=m1+m2+mn种不同的方法。如问题 1 从甲地到乙地的走法可以分为两类:第一类办法是走旱路有 3 种不同的走法。第二类办法是走水路有 2 种不同的走法。由加法原理共有 3+2=5 种不同的走

5、法。乘法原理乘法原理做一件事,完成它需要分成n 个步骤,第一个步骤有m1种不同的方法,第二个步骤有m2种不同的方法,第 n 个步骤有 mn种不同的方法,那么完成这件事共有 N=m1m2mn种不同的方法。如问题 2 从 A 村经过 B 村到达 C 村可分为两个步骤完成:第一步 A 村B 村,有 3 种不同的走法。第二步 B 村C 村,有 2 种不同的走法。由乘法原理,共有 32=6 种不同的走法。例例 1 1从甲地到乙地可以乘火车,也可以乘汽车或轮船。一天中火车有 4 班,汽车有 2 班,轮船有3 班,那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?解:完成由甲地到乙地这件事有三类

6、办法:第一类办法坐火车,一天中有 4 种不同走法。第 2 页第二类办法坐汽车,一天中有 2 种不同走法。第三类办法坐轮船,一天中有 3 种不同走法。由加法原理得:4+2+3=9答:有 9 种不同的走法。例 2 由数字 1、2、3、4、5 可以组成多少个允许有重复数字的三位数?无重复数字的三位数?解:(1)组成允许有重复数字的三位数这件事可分三个步骤完成:第一步确定百位上的数字:有 5 种不同方法。第二步确定十位上的数字:有 5 种不同方法。第三步确定个位数字:有 5 种不同方法。由乘法原理:555=125。答:可组成允许有重复数字的三位数 125 个。此题第(2)问由同学们自己完成,提醒大家注

7、意:允许有重复数字和无重复数字这两个条件的区别。第(2)问答案是 60 个。(三)运用两个基本原理时要注意以下几点:1.抓住两个基本原理的区别不要用混,不同类的方法(其中每一个方法都能把事情从头至尾做完)数之间做加法,不同步的方法(其中每一个方法都只能完成这件事的一部分)数之间做乘法。2.在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则。如:从若干件产品中抽出几件产品来检验,把抽出的产品中至多有 2 件次品的抽法分为两类:第一类抽出的产品中有 2 件次品,第二类抽出的产品中有一件次品,这样的分类显然漏掉了抽出的产品中无次品的情况。又如:把能被 2、被 3 或被 6 整除的数分为三类:

8、第一类能被 2 整除的数,第二类能被 3 整除的数,第三类能被 6 整除的数,其中第一类、第二类都和第三类有重复,这样分类是不行的。3.在运用乘法原理时,要注意每个步骤都做完这件事也必须完成,而且前面一个步骤中的每一种方法,在下个步骤中都得有 m 种不同的方法。二、巩固练习1.书架上层放有 6 本不同的数学书,下层放有 5 本不同的语文书:第 3 页(1)从中任取一本书,有多少种不同的取法?(2)从中任取数学、语文书各一本,有多少种不同的取法?(答案:(1)11 种,(2)30 种。)2.有三个袋子,其中一个袋子装有红色小球 20 个,每个球上标有 1 至 20 中的一个号码,一个袋子装有白色小球 15 个,每个小球上标有 1 至 15 中的一个号码。第三个袋子装有 8 个黄色小球,每个球上标有 1 至 8 中的一个号码。(1)从袋子里任取一个小球,有多少种不同的取法?(2)从袋子里任取红、白、黄色小球各一个,有多少种不同的取法?(答案:(1)43 种,(2)2400 种)三、布置作业1.复习本节内容:读书和看笔记。2.做教科书 2.1 基本原理后的练习 1 至 7 题。(答案:1.有 9 种选法;2.有 7 种选法;3.列出 200个式子;4.共有 60 项;5.有 14 种走法;6.(1)9 种,(2)20 种;7.(1)有 6 种,(2)有 8 种)第 4 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁