《等差数列的前n项和公式》教学设计.pdf

上传人:赵** 文档编号:52479428 上传时间:2022-10-23 格式:PDF 页数:6 大小:438.79KB
返回 下载 相关 举报
《等差数列的前n项和公式》教学设计.pdf_第1页
第1页 / 共6页
《等差数列的前n项和公式》教学设计.pdf_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《《等差数列的前n项和公式》教学设计.pdf》由会员分享,可在线阅读,更多相关《《等差数列的前n项和公式》教学设计.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、等差数列的前等差数列的前 n n 项和公式教学设计项和公式教学设计顺昌一中顺昌一中马丽伟马丽伟一、教学设计思想一、教学设计思想在以往的教学中,课堂教学实施往往过于注重知识传授倾向,学生被动地接受,很难从多方面培养学生的综合素质。而本堂课的设计是以个性化教学思想为指导进行设计的。本堂课的教学设计对教材部分内容进行了有意识的选择和改组,个性化地处理教材使学生更便于接受和理解。为了体现个性化教学的教学理念,在教法上,采用了以学生为主体,以问题为中心,以老师为引导,以小组的合作为主要学习方式。在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体

2、验,产生热爱数学的情感,体验在学习中获得成功。二、学生情况与教材分析二、学生情况与教材分析1、学生情况分析:学生思维较活跃,有一定的分析问题、探究问题进而解决问题的能力,并且学生已经学习了等差数列的定义和通项公式,掌握了一些等差数列的性质,而且具有一些生活中的实际经验和掌握了高斯数的推导方法2、几何能直观地启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。三、教学目标三、教学目标1 1、知识目标、知识目标(1)掌握等差数列前

3、n 项和公式,理解公式的推导方法;(2)能较熟练应用等差数列前n 项和公式求和。2 2、能力目标:、能力目标:经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力。3 3、情感目标:、情感目标:通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。四、教学重点、难点四、教学重点、难点1、等差数列前 n 项和公式是重点。2、获得等差数列前 n 项和公式推导的思路是难点。五、教学过程设计:五、教学过程设计:1+2+3+100教学设计流程图:(高斯数)

4、由 中的一题引(实物演示)入4+5+6+11(设置障碍,加以拓广)类比探究出等差数列前n项和公式公式应用,加深理解课后延伸反思小结第 1 页 共 6 页在教学过程中,先引导学生进入问题情景,然后教师逐层设问,引导学生探索,在议、讲、练相结合的合作探究式学习中,使学生经历新知识的形成过程,然后学以致用,运用等差数列的前n项 和 公 式 及 倒 序 相 加 法 中 展 现 的 项 数 之 和 相 等 时 两 项 之 和 也 相 等(指k,l,m,n N,k l m n时,ak al am an)解决一些简单问题,巩固新知识六、教学过程六、教学过程(三个阶段三个阶段:问题呈现阶段问题呈现阶段,探究发

5、现阶段探究发现阶段,公式应用阶段公式应用阶段)1.1.问题呈现阶段问题呈现阶段引入新课:上节课我们已经学习了有关等差数列的一些基本性质,那么这节课我们就来探讨一下等差数列的前 n 项和公式.问题呈现一问题呈现一:古算书中卷有一道题:今有与人钱,初一人与一钱;次一人与二钱;次一人与三钱;以次为之,转为一钱,共有百人。问:共与几钱?教师:教师:题目中我们可以得到哪些信息?要解决的问题是什么?学生:学生:第一人得一钱,第二人得二钱,第三人得三钱,以后每个人都比前一个人多得一钱,共有 100 人,问共给了多少钱?教师:教师:很好,问题已经呈现出来了,你能用数学语言表示吗?学生学生:用an表示第 n 个

6、人所得的钱数,由题意得:a1=1,a2=2,a3=3,a100=100.只要求出 1+2+3+100 即可.教师:教师:小学算术中称 1+2+3+100 为什么?学生:学生:高斯数教师教师:高斯在他 10 岁的时候就神速的算出了结果,他的算法很高明,请问他是如何算的?学生学生:1+2+3+100=(1+100)+(2+99)+(50+51)=10150=5050.教师教师:根据等差数列的特点,首尾配对求和的确是一种巧妙的方法.上述问题我们可以看成是等差数列 1,2,3,100,的前 100 项和.即S100 a1 a2 a3 a100。(设计意图:设计意图:通过情景引入活动、任务,让学生亲身经

7、历,将实际问题抽象成数学模型并进行解释与应用的过程,其作用就在于提升学生的经验,使之向连续的形式的、抽象的数学知识的转变。新教材中增添了一些数学史的知识,向同学们介绍了张邱建算经和高斯及他的算法,讲课的过程中适当插入数学史,为数学教学输入了新鲜血液,培养学生的数学文化,营造浓郁的“人文”氛围。)问题呈现二问题呈现二:泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。陵寝以宝石镶饰,图案之细致令人叫绝。传说陵寝中有一个梯形图案,以相同大小的圆宝石镶饰而成,共有 8 层(见下图),你知道这个图案一共

8、花了多少宝石吗?(设计意图:设计意图:图中算数,激发学习兴趣.这一个问题旨在让学生初步形成数形结合的思想,这是在高中数学学习中非常重要的思想方法.借助图形理解逆序相加,也为后面公式的推导打下基础.这有利于学生用形象思维突破倒序相加这一难点,并激发学生的学习兴趣,加深学生的理解与记忆)第 2 页 共 6 页平移平移旋转旋转得到得到平移平移4 411118 8解:宝石的数量解:宝石的数量8(411)S S8 821111(设计意图:设计意图:在知道了高斯算法之后,同学们很容易把本题与高斯算法联系起来,也就是联想到“首尾配对”摆出几何图形,引导学生去思考,如何将图与倒序相加结合起来,让他们借助几何图

9、形,将两个梯形拼成平行四边形.构建在学生已有生活经验与生命体验基础之上的数学课程大大激发了学生“做数学”的热情,数学课变得更生动、更活泼,更能引发学生的兴趣。)2.2.探究发现阶段:探究发现阶段:问题三:如何求等差数列an的前n项和Sn?n1等差数列前等差数列前 n n 项和公式:项和公式:n(a1an)S S n n2naana(由前面的例子,结合上节课学过的等差数列的性质:如果k,l,m,n N,k l m n时,ak al am an不难推出)又 可 以 写 成:Sn a1 a2 a3 an2 an1 an把项的次序倒过来,SnSn an an1 an2 a3 a2 a1,两 式 左 右

10、 分 别 相 加,得 到:2Sna1ana2an1a3an2an2a3an1a2ana1第 3 页 共 6 页na1anSn2(倒序相加法)(设计意图:设计意图:在前面两个问题的基础上,问题三提出了等差数列求和公式的推导,鼓励学生利用“倒序相加”的数学方法推导公式。)教师:教师:公式与初中学过的什么公式相似?学生:学生:梯形的面积公式S h(a b)2(设计意图:设计意图:与梯形的面积公式进行类比,为学生记忆公式提供记忆方法)教师教师:如果已知等差数列的首项a1,公差d和项数n能否求出分析:分析:把SnSn?n(a1 an)中的an用a1(n 1)d表示2学生:学生:将通项公式an a1(n

11、1)d,代入到上面的公式式,得到Sn na1n(n 1)d2(设计意图:设计意图:学生自己推导,有利于学生对两个公式联系的理解)3.3.公式应用阶段公式应用阶段例例 1 1:求正整数中前:求正整数中前 n n 个奇数的和个奇数的和解法 1:设正整数中的奇数列为an,则首项为a1=1,公差为d 2,an 2n1,Snn(a1 an)n1(2n 1)n222n(n 1)2 n22解法 2:a11,a2 3d 2Sn n1例例 2:2:等差数列等差数列-10-10,-6-6,-2-2,2 2,前多少项的和是,前多少项的和是 5454?解:本例题已知公差为 4,首相为10,前 n 项和为 54,欲求项

12、数 n,于是变用公式 2。n(n1)454 10n解得:n 3 或 n92又因为项数不能为负数,所以3 舍去,一共有 9 项(设计意图:设计意图:让学生巩固所学的知识,熟练公式的应用。)练习 1在等差数列an中,已知a10 29,S10155,求a1。解:由已知得:(a1 29)10155,2解得:a1=2第 4 页 共 6 页练习 2在等差数列解法 1:an中,已知a6a1510,求S20a6a1510,a15da114d10,即2a119d10S2020 a1a2020 a1(a119d)20 2a119d10 1010022220 19d10(2a119d)10 101002解法 2:S

13、2020a1解法 3:S2020(a1a20)20 a6a152010100222(设计意图设计意图:学以致用,直接运用公式加深的公式的认识和理解。主要通过方程的思想进行基本量的运算。注意理解格式和规范。)4 4、反思总结、深化认识、反思总结、深化认识(请学生谈谈自己的收获)(请学生谈谈自己的收获)1 1你在知识与技能上的收获:你在知识与技能上的收获:(1)两个公式Snn(a1an)2;Snna1n(n1)d2Sna1,注意:当d0时,n(2)推导公式的倒序相加法2 2从等差数列前从等差数列前 n n 项和公式的探究过程你有什么收获?项和公式的探究过程你有什么收获?从特殊到一般和类比探究的方法

14、3 3你对数学的认识有什么提高:你对数学的认识有什么提高:数学源于生产生活反之又为生产生活服务;数形结合、函数与方程是数学重要的思想;敢于探索、敢于发现的精神,激发学习兴趣(设计意图设计意图:围绕三围目标进行小结)4 4你有什么疑问?(没有人提疑问时教师反问)你有什么疑问?(没有人提疑问时教师反问)什么时候使用倒序相加法?倒序之后对应项之和相等(设计意图设计意图:“你有什么疑问?”有利于发现学生中存在的问题,巩固倒序相加法促进了学第 5 页 共 6 页生的反思,有利于查漏补缺,也有利于教师的反思)5 5、布置作业,加强巩固、布置作业,加强巩固必做题:课本 142 页,练习 A、;选做题:课本

15、142 页,练习 B,1(设计意图设计意图:必做题是让学生巩固所学的知识,熟练公式的应用。根据我校的特点,为了促进数学成绩优秀学生的发展,培养他们分析问题解决问题的能力,我们设计了选做题,达到分层教学的目的。)【教学反思教学反思】:综观本节课,存在有特点主要有以下几点:1、合理地对教材进行了个性化处理,挖掘了教材中可探究的因素,促使学生探究、推导。例如:等差数列前 n 项和的公式一,是通过具体的例子,引到一般的情况,激励学生进行猜想,再进行论证得出;而第二个公式并不象书本上那样直接给出,而是让学生从习题中进行归纳总结得到的。这样处理教材,使学生的思维得到了很大的锻炼。2、本节课主要采用观察法、归纳法等教学方法,同时采用设计变式题的教学手段进行教学,通过具体问题的引入,使学生体会数学源于生活,创设情境,重在启发引导,使学生由浅到深,由易到难分层次对本节课内容进行掌握。学生在学习的过程中体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力。3、在教学中,鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,渗透了数形结合的数学思想。第 6 页 共 6 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁