《2019全国2卷高考数学理科含答案详解(珍藏版).pdf》由会员分享,可在线阅读,更多相关《2019全国2卷高考数学理科含答案详解(珍藏版).pdf(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、绝密 启用前2019 年普通高等学校招生全国统一考试(全国2 卷)理科数学本试卷共23 题,共 150 分,共 4 页。考试结束后,将本试卷和答题卡一并交回。注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2选择题必须使用2B 铅笔填涂;非选择题必须使用笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,在草稿纸、试题卷上答题无效。05 毫米黑色字迹的签字超出答题区域书写的答案无效;4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共1
2、212 小题,每小题5 5 分,共 6060 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5 分)设集合A(,1)A x|x5x+60,Bx|x10,则 A B(B(2,1)C(3,1)对应的点位于(C第三象限|1,则C2?()D第四象限)D3我国2)D(3,+)2(5 分)设 z 3+2i,则在复平面内A第一象限3(5 分)已知A 3B第二象限(2,3),B 2(3,t),|4(5 分)2019 年 1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,航天事业取得又一重大成就实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系为解决这个问题,发射
3、了嫦娥四号中继星“鹊桥”地月拉格朗日,鹊桥沿着围绕L2点的轨道运行L2点是平衡点,位于地月连线的延长线上设地球质量R,L2点到月球的距离为+(R R+r)r,根据牛顿运动定律和万为 M1,月球质量为M2,地月距离为有引力定律,r 满足方程:设 由于 的值很小,因此在近似计算中3,则 r 的近似值3为()ARBRC第 1 1 页(共 1818 页)RDR5(5 分)演讲比赛共有个原始评分中去掉9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从99 个原始1 个最高分、1 个最低分,得到 7 个有效评分.7 个有效评分与)C方差D极差评分相比,不变的数字特征是(A中位数6(5 分)若 ab
4、,则(Aln(a b)0B平均数)B33abCab 0 的充要条件是()33D|a|b|7(5 分)设 ,为两个平面,则A内有无数条直线与B内有两条相交直线与C,平行于同一条直线D,垂直于同一平面2平行平行8(5 分)若抛物线y2px(p0)的焦点是椭圆+1 的一个焦点,则p()A29(5 分)下列函数中,以Af(x)|cos2x|B3为周期且在区间(Bf(x)|sin2x|C4,D8)单调递增的是()Cf(x)cos|x|)Df(x)sin|x|10(5 分)已知(0,AB),2sin2 cos2+1,则 sin(CD11(5 分)设F 为双曲线C:2221(a0,b0)的右焦点,O 为坐标
5、原点,以OF 为直径的圆与圆Ax+y a 交于 P,Q 两点若|PQ|OF|,则 C 的离心率为(BC2D)12(5 分)设函数f(x)的定义域为R R,满足 f(x+1)2f(x),且当 x(0,1时,f(x),则 m 的取值范围是(D(,)x(x1)若对任意x(,m,都有 f(x)A(,B(,4 4 小题,每小题C(,二、填空题:本题共5 5 分,共 2020 分。10 个车0.99,则经13(5 分)我国高铁发展迅速,技术先进经统计,在经停某站的高铁列车中,有次的正点率为0.97,有 20 个车次的正点率为0.98,有 10 个车次的正点率为第 2 2 页(共 1818 页)停该站高铁列
6、车所有车次的平均正点率的估计值为ax,则(ln2)8,则 a14(5 分)已知 f(x)是奇函数,且当 x0 时,f(x)e 若 f15(5 分)ABC 的内角 A,B,C 的对边分别为ABC 的面积为a,b,c若 b6,a 2c,B16(5 分)中国有悠久的金石文化,印信是金石文化的代表之一印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图 1)半正多面体是由两种或两种以上的正多边形围成的多面体半正多面体体现了数学的对称美图 2 是一个棱数为此正方体的棱长为48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且个面,其棱长为1则该半正多面体共有
7、三、解答题:共7070 分。解答应写出文字说明、证明过程或演算步骤。第2222、2323 题为选考题,考生根据要求作答。17172121 题为必考(一)必考题:题,每个试题考生都必须作答。第共 6060 分。17(12 分)如图,长方体BEEC1(1)证明:BE平面 EB1C1;ABCDA1B1C1D1的底面 ABCD 是正方形,点E 在棱 AA1上,(2)若 AEA1E,求二面角BECC1的正弦值第 3 3 页(共 1818 页)18(12 分)11 分制乒乓球比赛,每赢一球得球权,先多得1 分,当某局打成10:10 平后,每球交换发2 分的一方获胜,该局比赛结束甲、乙两位同学进行单打比赛,
8、假设甲0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立在某发球时甲得分的概率为局双方 10:10 平后,甲先发球,两人又打了(1)求 P(X2);(2)求事件“X4 且甲获胜”的概率X 个球该局比赛结束19(12 分)已知数列 an和bn满足 a11,b10,4an+13anbn+4,4bn+1 3bnan 4(1)证明:an+bn 是等比数列,anbn 是等差数列;(2)求 an和 bn的通项公式20(12 分)已知函数f(x)lnxf(x)有且仅有两个零点;ylnx 在点 A(x0,lnx0)处的切线也是曲线(1)讨论 f(x)的单调性,并证明(2)设 x0是 f(x)的一个零点,
9、证明曲线ye的切线21(12 分)已知点之积为xA(2,0),B(2,0),动点 M(x,y)满足直线CAM 与 BM 的斜率记 M 的轨迹为曲线(1)求 C 的方程,并说明(2)过坐标原点的直线交C 是什么曲线;C 于 P,Q 两点,点P在第一象限,PEx 轴,垂足为E,连结 QE 并延长交C 于点 G(i)证明:PQG 是直角三角形;(ii)求 PQG 面积的最大值(二)选考题:共1010 分。请考生在第2222、2323 题中任选一题作答。如果多做,则按所做的(1010 分)第一题计分。选修 4-44-4:坐标系与参数方程第 4 4 页(共 1818 页)22(10 分)在极坐标系中,(
10、4sin上,0,0)00)在曲线C:O 为极点,点M(P直线 l 过点 A(4,0)且与 OM 垂直,垂足为(1)当 0时,求 0及 l 的极坐标方程;(2)当 M 在 C 上运动且P 在线段 OM 上时,求P 点轨迹的极坐标方程 选修 4-54-5:不等式选讲(1010 分)23已知 f(x)|xa|x+|x2|(xa)(1)当 a1 时,求不等式f(x)0 的解集;(2)当 x(,1)时,f(x)0,求 a 的取值范围第 5 5 页(共 1818 页)20192019 年全国统一高考数学答案解析(理科)一、选择题:本题共1212 小题,每小题一项是符合题目要求的。1【分析】根据题意,求出集
11、合A、B,由交集的定义计算可得答案2(新课标)5 5 分,共 6060 分。在每小题给出的四个选项中,只有【解答】解:根据题意,A x|x 5x+60 x|x3 或 x2,Bx|x 10 x|x 1,则 ABx|x1(,1);故选:A【点评】本题考查交集的计算,关键是掌握交集的定义,属于基础题2【分析】求出 z的共轭复数,根据复数的几何意义求出复数所对应点的坐标即可【解答】解:z 3+2i,在复平面内故选:C【点评】本题考查共轭复数的代数表示及其几何意义,属基础题3【分析】由先求出的坐标,然后根据|1,可求 t,结合向量数量积定,对应的点为(3,2),在第三象限义的坐标表示即可求解【解答】解:
12、|1,(1,0),(2,3),(3,t),(1,t3),t30 即则?2故选:C【点评】本题主要考查了向量数量积的定义及性质的坐标表示,属于基础试题R3,由此能求出r34【分析】由 推导出第 6 6 页(共 1818 页)【解答】解:r R,r 满足方程:+(R R+r)33,r R故选:D【点评】本题考查点到月球的距离的求法,考查函数在我国航天事业中的灵活运用,考查化归与转化思想、函数与方程思想,考查运算求解能力,是中档题5【分析】根据题意,由数据的数字特征的定义,分析可得答案【解答】解:根据题意,从9 个原始评分中去掉1 个最高分、1 个最低分,得到效评分,7 个有效评分与9 个原始评分相
13、比,最中间的一个数不变,即中位数不变,故选:A【点评】本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法,属于基础题6【分析】取 a0,b 1,利用特殊值法可得正确选项【解答】解:取 a0,b 1,则ln(a b)ln10,排除 A;,排除 B;a303(1)3 1 b3,故 C 对;|a|0|1|1b,排除 D故选:C【点评】本题考查了不等式的基本性质,利用特殊值法可迅速得到正确选项,属基础题7【分析】充要条件的定义结合面面平行的判定定理可得结论【解答】解:对于A,内有无数条直线与平行,或 ;对于 B,内有两条相交直线与平行,;对于 C,平行于同一条直线,或
14、 ;第 7 7 页(共 1818 页)7 个有对于 D,垂直于同一平面,故选:B 或 【点评】本题考查了充要条件的定义和面面平行的判定定理,考查了推理能力,属于基础题8【分析】根据抛物线的性质以及椭圆的性质列方程可解得【解答】解:由题意可得:故选:D【点评】本题考查了抛物线与椭圆的性质,属基础题9【分析】根据正弦函数,余弦函数的周期性及单调性依次判断,利用排除法即可求解【解答】解:f(x)sin|x|不是周期函数,可排除f(x)cos|x|的周期为 2,可排除C 选项;f(x)|sin2x|在故选:A【点评】本题主要考查了正弦函数,余弦函数的周期性及单调性,考查了排除法的应用,属于基础题10【
15、分析】由二倍角的三角函数公式化简已知可得,结合角的范围可求4sin cos 2cos sin的值23pp(),解得 p82D 选项;处取得最大值,不可能在区间(,)单调递增,可排除Bsin 0,cos 0,可得 cos 2sin,根据同角三角函数基本关系式即可解得【解答】解:2sin2 cos2+1,可得:4sin cos 2cos,(0,),sin 0,cos 0,2cos 2sin,sin+cos sin +(2sin)5sin 1,解得:sin 故选:B【点评】本题主要考查了二倍角的三角函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题11【分析】由题
16、意画出图形,先求出【解答】解:如图,第 8 8 页(共 1818 页)22222PQ,再由|PQ|OF|列式求 C 的离心率由题意,把x代入 x2+y2a2,得 PQ,再由|PQ|OF|,得,即 2a2c2,解得 e故选:A【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题【分析】因为 f(x+1)2f(x),f(x)2f(x1),分段求解析式,结合图象可得【解 答】解:因 为f(x+1)2f(x),f(x)2f(x 1),x(0,1时,f(x)x(x1),0,x(1,2时,x1(0,1,f(x)2f(x1)2(x1)(x2),0;x(2,3时,x1(1,2,f(x)2f(
17、x1)4(x2)(x3)1,0,第 9 9 页(共 1818 页)12当 x(2,3时,由 4(x2)(x3)若对任意x(,m,都有 f(x)故选:B解得 x,则 m或 x,【点评】本题考查了函数与方程的综合运用,属中档题二、填空题:本题共4 4 小题,每小题5 5 分,共 2020 分。13【分析】利用加权平均数公式直接求解【解答】解:经统计,在经停某站的高铁列车中,有有 20 个车次的正点率为0.98,有 10 个车次的正点率为10 个车次的正点率为0.99,0.97,经停该站高铁列车所有车次的平均正点率的估计值为:(100.97+200.98+100.99)0.98故答案为:0.98【点
18、评】本题考查经停该站高铁列车所有车次的平均正点率的估计值的求法,考查加权平均数公式等基础知识,考查推理能力与计算能力,属于基础题14【分析】奇函数的定义结合对数的运算可得结果【解答】解:f(x)是奇函数,f(ln2)8,又当 x0 时,f(x)e,f(ln2)ealn2ax 8,aln2ln8,a 3故答案为:3【点评】本题主要考查函数奇偶性的应用,对数的运算性质,属于基础题15【分析】利用余弦定理得到可【解答】解:由余弦定理有b6,a2c,B222c,然后根据面积公式2SABCacsinB csinB 求出结果即2b a+c2accosB,222,36(2c)+c4ccosc 12,SABC
19、2,第 1010 页(共 1818 页)故答案为:6【点评】本题考查了余弦定理和三角形的面积公式,属基础题16【分析】中间层是一个正八棱柱,有面,故共有倍8+8+8+226 个面,设其棱长为x,则 x+x+x 1,8 个侧面,上层是有8+1,个面,下层也有8+1 个cos4526 个面;半正多面体的棱长为中间层正八棱柱的棱长加上两个棱长的【解答】解:该半正多面体共有解得 x1 1故答案为:26,【点评】本题考查了球内接多面体,属中档题三、解答题:共7070 分。解答应写出文字说明、证明过程或演算步骤。第2222、2323 题为选考题,考生根据要求作答。17172121 题为必考(一)必考题:题
20、,每个试题考生都必须作答。第共 6060 分。17【分析】(1)推导出B1C1BE,BEEC1,由此能证明BE平面 EB1C1B(2)以 C 为坐标原点,建立如图所示的空间直角坐标系,利用向量法能求出二面角ECC1的正弦值【解答】证明:(1)长方体ABCDA1B1C1D1中,B1C1平面 ABA1B1,B1C1BE,BEEC1,BE平面 EB1C1解:(2)以 C 为坐标原点,建立如图所示的空间直角坐标系,设 AEA1E1,BE平面 EB1C1,BE EB1,AB1,则 E(1,1,1),A(1,1,0),B1(0,1,2),C1(0,0,2),C(0,0,0),BC EB1,EB1面 EBC
21、,故取平面EBC 的法向量为(1,0,1),设平面 ECC1的法向量(x,y,z),由,得,取 x1,得(1,1,0),cos,第 1111 页(共 1818 页)二面角BECC1的正弦值为【点评】本题考查线面垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题18【分析】(1)设双方10:10 平后的第k 个球甲获胜为事件(X2)P(A1A2)+P(果(2)P(X4 且甲获胜)P(P(A4)+P(A1)P(A2A3A4)+P()P()P(A2)P(A3)P(A1)P(A2)+P(Ak(k1,2,3,),则 P)P(),由此能
22、求出结)P(A3)P(A4),由此能求出事件“X4 且甲获胜”的概率Ak(k1,2,3,),【解答】解:(1)设双方10:10 平后的第k 个球甲获胜为事件则 P(X2)P(A1A2)+P(P(A1)P(A2)+P(0.50.4+0.50.60.5(2)P(X4 且甲获胜)P(P(A2A3A4)+P()P()P(A3)P(A4)P(A2)P(A3)P(A4)+P(A1)P(0.5 0.4+0.50.6)0.5 0.40.1【点评】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题19【分析】(1)定义法证明即可;第 1212 页(共 1818 页)(2
23、)由(1)结合等差、等比的通项公式可得【解答】解:(1)证明:4an+13anbn+4,4bn+13bnan4;4(an+1+bn+1)2(an+bn),4(an+1bn+1)4(an bn)+8;即 an+1+bn+1(an+bn),an+1 bn+1 anbn+2;又 a1+b11,a1b11,an+bn 是首项为1,公比为的等比数列,anbn 是首项为1,公差为 2 的等差数列;(2)由(1)可得:an+bn(anbn1+2(n1)2n1;an(bn()+n)n+nn)n1,【点评】本题考查了等差、等比数列的定义和通项公式,是基础题20【分析】(1)讨论f(x)的单调性,求函数导数,在定
24、义域内根据函数零点大致区间求零点个数,(2)运用曲线的切线方程定义可证明【解答】解析:(1)函数 f(x)lnxf(x)+定义域为:(0,1)(1,+);0,(x0且 x 1),f(x)在(0,1)和(1,+)上单调递增,在(0,1)区间取值有f()0,f(,代入函数,由函数零点的定义得,)?f()0,)0,f(f(x)在(0,1)有且仅有一个零点,在(1,+)区间,区间取值有2e,e代入函数,由函数零点的定义得,22又 f(e)0,f(e)0,f(e)?f(e)0,f(x)在(1,+)上有且仅有一个零点,故 f(x)在定义域内有且仅有两个零点;(2)x0是 f(x)的一个零点,则有lnx0,
25、第 1313 页(共 1818 页)曲线 ylnx,则有 y;ylnx0(x x0)曲线 ylnx 在点 A(x0,lnx0)处的切线方程为:即:y即:yx1+lnx0 x+x而曲线 ye 的切线在点(ln即:y故得证【点评】本题考查x+,)处的切线方程为:y(xlnx),故曲线 ylnx 在点 A(x0,lnx0)处的切线也是曲线ye 的切线f(x)的单调性,函数导数,在定义域内根据函数零点大致区间求零点个数,以及利用曲线的切线方程定义证明21【分析】(1)利用直接法不难得到方程;(2)(i)设 P(x0,y0),则 Q(x0,y0),E(x0,0),利用直线QE 的方程与椭圆方程联立求得G
26、 点坐标,去证PQ,PG 斜率之积为 1;(ii)利用 S,代入已得数据,并对换元,利用“对号”函数可得最值【解答】解:(1)由题意得,整理得曲线C 的方程:,曲线 C 是焦点在 x 轴上不含长轴端点的椭圆;(2)(i)设 P(x0,y0),则 Q(x0,y0),G(xG,yG),E(x0,0)第 1414 页(共 1818 页)直线 QE 的方程为:,与联立消去y,得,把代入上式,得 kPG,第 1515 页(共 1818 页)kPQkPG 1,PQ PG,故 PQG 为直角三角形;(ii)SPQG令 t,则 t2,SPQG利用“对号”函数f(t)2t+在2,+)的单调性可知,第 1616
27、页(共 1818 页)f(t)(t2 时取等号),(此时),故 PQG 面积的最大值为【点评】此题考查了直接法求曲线方程,直线与椭圆的综合,换元法等,对运算能力考查尤为突出,难度大(二)选考题:共1010 分。请考生在第2222、2323 题中任选一题作答。如果多做,则按所做的(1010 分)第一题计分。选修 4-44-4:坐标系与参数方程22【分析】(1)把 0直接代入 4sin即可求得,),0,在直线l 上任取一点(l 的极坐标方程;利用三角形中点边角关系即可求得(2)设 P(,),在 RtOAP 中,根据边与角的关系得答案【解答】解:(1)当 0时,;在直线 l 上任取一点(,),则有故
28、 l 的极坐标方程为有(2)设 P(,),则在 RtOAP 中,有 4cos,P 在线段 OM 上,故 P 点轨迹的极坐标方程为,4cos,【点评】本题考查解得曲线的极坐标方程及其应用,画图能够起到事半功倍的作用,是基础题 选修 4-54-5:不等式选讲(1010 分)23【分析】(1)将 a1 代入得 f(x)|x1|x+|x2|(x1),然后分 x1 和 x1 两种情况讨论 f(x)0 即可;(2)根据条件分a1 和 a1 两种情况讨论即可第 1717 页(共 1818 页)【解答】解:(1)当 a1 时,f(x)|x1|x+|x2|(x1),f(x)0,当 x1 时,f(x)2(x1)0,恒成立,x 1;当 x1 时,f(x)(x1)(x+|x2|)0 恒成立,x?;综上,不等式的解集为(,1);2(2)当 a1 时,f(x)2(ax)(x1)0 在 x(,1)上恒成立;当 a1 时,x(a,1),f(x)2(xa)0,不满足题意,a 的取值范围为:1,+)本题考查了绝对值不等式的解法,考查了分类讨论思想,属中档题第 1818 页(共 1818 页)【点评】