《高中数学必修5教案.pdf》由会员分享,可在线阅读,更多相关《高中数学必修5教案.pdf(60页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、111 正弦定理教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。教学重点正弦定理的探索和证明及其基本应用。教学难点已知两边和其
2、中一边的对角解三角形时判断解的个数。教学过程一.课题导入如图 11-1,固定ABC 的边 CB 及B,使边 AC 绕着顶点 C 转动。思考:C 的大小与它的对边 AB 的长度之间有怎样的数量关系?A显然,边 AB 的长度随着其对角C 的大小的增大而增大。能否用一个等式把这种关系精确地表示出来?CB二.讲授新课探索研究在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图,在 RtABC 中,设 BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,abcAsinA,sinB,又sinC1,cccabcc则sinAsinBsinCCBabc从而在直角三
3、角形 ABC 中,sinAsinBsinC有思考 1:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图 11-3,(1)当ABC 是锐角三角形时,设边 AB 上的高是 CD,根据任意角三角函数的定义,有 CD=asinBbsinA,则同理可得从而asinAbsinB,CcsinCbsinB,b a A c BsinAsinBsinC(2)当ABC 是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)思考 2:还有其方法吗?由于涉及边长问题,从而可以考虑用向量来研究这问题。abc1(证法二):过点 A 作单位向量jAC,由向量的加
4、法可得ABACCB则jABj(ACCB)CjABjACjCBj ABcos900A0 j CBcos900Ccsin AasinC,即AjBacsinA sinC同理,过点 C 作jBC,可得从上面的研探过程,可得以下定理bcabc从而sinBsinCsinAsinBsinC正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即理解定理asinAbsinBcsinC(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数 k 使aksinA,bksinB,cksinC;(2)asinAsinBsinCsinA思考:正弦定理的基本作用是什么?bc等价于absi
5、nB,csinCbsinB,asinAcsinC已知三角形的任意两角及其一边可以求其他边,如absinA;sinB 已 知 三 角 形 的 任意 两 边 与 其 中一 边 的 对 角 可以 求 其 他 角 的正 弦 值,如sinAsinB。一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。例题分析例 1在ABC中,已知A32.00,B81.80,a42.9cm,解三角形。解:根据三角形内角和定理,abC1800(AB)1800(32.0081.80)66.20;asinB42.9sin81.8080.1(cm);根据正弦定理,bsinAsin32.00asinC42.9sin6
6、6.2074.1(cm).根据正弦定理,csinAsin32.00评述:对于解三角形中的复杂运算可使用计算器。练习:在ABC中,已知下列条件解三角形。(1)A 45,C 30,c 10cm,(2)A 60,B 45,c 20cm例 2 在ABC中,已知a20cm,b28cm,A40,解三角形(角度精确到1,边长精确到 1cm)。解:根据正弦定理,002bsinA28sin400sinB0.8999.因为00B1800,所以B640,或a200B116.当B640时,C108 0 A(B0)10800,(4 064asinC20sin760c30(cm).sinAsin400当B1160时,C1
7、080A(B0)01 8,0(4 0asinC20sin240c13(cm).0sinAsin40应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。课堂练习第 4 页练习第 2 题。思考题:在ABC 中,asinAsinB三.课时小结(由学生归纳总结)(1)定理的表示形式:bcsinCk(ko),这个 k 与ABC 有什么关系?abckk0;sinAsinBsinCsinAsinBsinC或aksinA,bksinB,cksinC(k 0)abc(2)正弦定理的应用范围:已知两角和任一边,求其它两边及一角;已知两边和其中一边对角,求另一边的对角。四.课后作业:P10 面 1、2 题。
8、31.2 解三角形应用举例第一课时一、教学目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语2、激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力二、教学重点、难点教学重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解教学难点:根据题意建立数学模型,画出示意图三、教学设想1、复习旧知复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、设置情境请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我
9、们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。3、新课讲授(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题
10、里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解(2)例 1、如图,设 A、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点 C,测出 AC 的距离是 55m,BAC=51,ACB=75。求 A、B 两点的距离(精确到 0.1m)提问 1:ABC 中,根据已知的边和对应角,运用哪个定理比较适当?提问 2:运用该定理解题还需要那些边和角呢?请学生回答。分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边 AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出 AC 的对角,应
11、用正弦定理算出 AB 边。4解:根据正弦定理,得AB =ACsinACBsinABCsinABC55sin75=55sin75 65.7(m)sin(1805175)sin54 AB=ACsinACB=55sinACB=sinABC答:A、B 两点间的距离为 65.7 米变式练习:两灯塔 A、B 与海洋观察站 C 的距离都等于 a km,灯塔 A 在观察站 C 的北偏东 30,灯塔 B 在观察站 C 南偏东 60,则 A、B 之间的距离为多少?老师指导学生画图,建立数学模型。解略:2a km例 2、如图,A、B 两点都在河的对岸(不可到达),设计一种测量 A、B 两点间距离的方法。分析:这是例
12、 1 的变式题,研究的是两个不可到达的点之间的距离测量问题。首先需要构造三角形,所以需要确定 C、D 两点。根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出 AC 和 BC,再利用余弦定理可以计算出 AB 的距离。解:测量者可以在河岸边选定两点 C、D,测得 CD=a,并且在 C、D 两点分别测得BCA=,ACD=,CDB=,BDA=,在ADC 和BDC 中,应用正弦定理得 AC=BC=asin()=asin()sin180()sin()asinasin =sin180()sin()计算出 AC 和 BC 后,再在ABC 中,应用余弦定理计算出 AB 两点间的距离 A
13、B=AC2 BC2 2AC BC cos分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。变式训练:若在河岸选取相距 40 米的 C、D 两点,测得BCA=60,ACD=30,CDB=45,BDA=60略解:将题中各已知量代入例 2 推出的公式,得 AB=206评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选5择最佳的计算方式。4、学生阅读课本 4 页,了解测量中基线的概念,并找到生活中的相应例子。5、课堂练习:课本第 14 页练习第 1、2 题6、归纳总结解斜三角形应
14、用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解四、课后作业1、课本第 22 页第 1、2、3 题2、思考题:某人在 M 汽车站的北偏西 20的方向上的 A 处,观察到点 C 处有一辆汽车沿公路向 M 站行驶。公路的走向是 M 站的北偏东 40。开始时,汽车到 A 的距离为 31 千米,汽车前进 20 千米后,到A 的距离缩短了 10 千米。
15、问汽车还需行驶多远,才能到达M 汽车站?解:由题设,画出示意图,设汽车前进 20 千米后到达 B 处。在ABC 中,AC=31,BC=20,AB=21,由余弦定理得AC2 BC2 AB223cosC=,2AC BC31则 sin2C=1-cos2C=43212 3,sinC=,2313135 362所以 sinMAC=sin(120-C)=sin120cosC-cos120sinC=在MAC 中,由正弦定理得 MC=ACsinMAC3135 3=35 从而有 MB=MC-BC=1562sinAMC32答:汽车还需要行驶 15 千米才能到达 M 汽车站。作业:习案作业三61.2 解三角形应用举例
16、第二课时一、教学目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题2、巩固深化解三角形实际问题的一般方法,养成良好的研究、探索习惯。3、进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力二、教学重点、难点重点:结合实际测量工具,解决生活中的测量高度问题难点:能观察较复杂的图形,从中找到解决问题的关键条件三、教学过程.课题导入提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题.讲授新课范例讲解例 1、AB 是底部 B 不可到达的一个建筑物,A
17、为建筑物的最高点,设计一种测量建筑物高度 AB 的方法。分析:求 AB 长的关键是先求 AE,在ACE 中,如能求出 C 点到建筑物顶部 A 的距离 CA,再测出由 C 点观察 A 的仰角,就可以计算出 AE 的长。解:选择一条水平基线 HG,使 H、G、B 三点在同一条直线上。由在 H、G 两点用测角仪器测得 A 的仰角分别是、,CD=a,测角仪器的高是 h,那么,在ACD 中,根据正弦定理可得AC=asin AB=AE+h=ACsin+h=asinsin+hsin()sin()例 2、如图,在山顶铁塔上 B 处测得地面上一点 A 的俯角=5440,在塔底 C 处测得 A 处的俯角=501。
18、已知铁塔 BC 部分的高为 27.3 m,求出山高 CD(精确到 1 m)师:根据已知条件,大家能设计出解题方案吗?若在ABD 中求 CD,则关键需要求出哪条边呢?生:需求出 BD 边。师:那如何求 BD 边呢?7生:可首先求出 AB 边,再根据BAD=求得。解:在ABC 中,BCA=90+,ABC=90-,BAC=-,BAD=.根据正弦定理,BCAB=sin()sin(90)BCsin(90)BCcos所 以AB=在RtABD中,得BDsin()sin()=ABsinBAD=BCcossinsin()27.3cos501sin544027.3cos501sin5440将测量数据代入上式,得
19、BD=177(m)sin439sin(5440501)CD=BD-BC177-27.3=150(m)答:山的高度约为 150 米.思考:有没有别的解法呢?若在ACD 中求 CD,可先求出 AC。思考如何求出 AC?例 3、如图,一辆汽车在一条水平的公路上向正东行驶,到 A 处时测得公路南侧远处一山顶 D在东偏南 15的方向上,行驶 5km 后到达 B 处,测得此山顶在东偏南 25的方向上,仰角为 8,求此山的高度 CD.思考 1:欲求出 CD,大家思考在哪个三角形中研究比较适合呢?(在BCD 中)思考 2:在BCD 中,已知 BD 或 BC 都可求出 CD,根据条件,易计算出哪条边的长?(BC
20、边)解:在ABC 中,A=15,C=25-15=10,根据正弦定理,BCABABsinA=,BC =7.4524(km)CD=BCtanDBCBCtan8sinAsin CsinC1047(m)答:山的高度约为 1047 米.课堂练习:课本第 17 页练习第 1、2、3 题.课时小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化。.课后作业1、作业:习案作业五81.2 解三角形应用举例第三课时一、教学目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题2、通过综合训练强化学生的相应能力,让学生
21、有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三。3、培养学生提出问题、正确分析问题、独立解决问题的能力,并激发学生的探索精神。二、教学重点、难点重点:能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系难点:灵活运用正弦定理和余弦定理解关于角度的问题三、教学过程.课题导入创设情境提问:前面我们学习了如何测量距离和高度,这些实际上都可转化已知三角形的一些边和角求其余边的问题。然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题。.讲授新课范例讲解例 1、如图,一艘海轮从
22、A 出发,沿北偏东 75的方向航行 67.5 n mile 后到达海岛 B,然后从 B 出发,沿北偏东 32的方向航行 54.0 n mile 后达到海岛 C.如果下次航行直接从 A 出发到达 C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到 0.1,距离精确到0.01n mile)学生看图思考并讲述解题思路分析:首先根据三角形的内角和定理求出 AC 边所对的角ABC,即可用余弦定理算出 AC边,再根据正弦定理算出 AC 边和 AB 边的夹角CAB。解:在ABC 中,ABC=180-75+32=137,根据余弦定理,AC=AB2 BC2 2AB BC cosABC=67.52 54
23、.02 267.554.0cos137113.1554.0 sin 137BCACBCsinABC根据正弦定理,=sinCAB=113.15sinCABsinABCAC0.3255,9所以CAB=19.0,75-CAB=56.0答:此船应该沿北偏东 56.1的方向航行,需要航行 113.15n mile例 2、在某点 B 处测得建筑物 AE 的顶端 A 的仰角为,沿 BE 方向前进 30m,至点 C 处测得顶端 A 的仰角为 2,再继续前进 103m 至 D 点,测得顶端 A 的仰角为 4,求的大小和建筑物 AE 的高。解法一:(用正弦定理求解)由已知可得在ACD 中,AC=BC=30,AD=
24、DC=103,ADC=180-4,10 3=sin230。因为 sin4=2sin2cos2sin(180 4)cos2=AE=ADsin60=153,得 2=30=152,在RtADE中,答:所求角为 15,建筑物高度为 15m解法二:(设方程来求解)设 DE=x,AE=h在 RtACE 中,(103+x)2+h2=302在 RtADE 中,x2+h2=(103)2两式相减,得 x=53,h=15在 RtACE 中,tan2=h10 3 x=332=30,=15答:所求角为 15,建筑物高度为 15m解法三:(用倍角公式求解)设建筑物高为 AE=8,由题意,得BAC=,CAD=2,AC=BC
25、=30m,AD=CD=103m在 RtACE 中,sin2=4x-在 RtADE 中,sin4=,-3010 33,2=30,=15,AE=ADsin60=15210 得 cos2=答:所求角为 15,建筑物高度为 15m例 3、某巡逻艇在 A 处发现北偏东 45相距 9 海里的 C 处有一艘走私船,正沿南偏东 75的方向以 10 海里/小时的速度向我海岸行驶,巡逻艇立即以 14 海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?师:你能根据题意画出方位图?教师启发学生做图建立数学模型分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量。解
26、:如图,设该巡逻艇沿 AB 方向经过 x 小时后在 B 处追上走私船,则 CB=10 x,AB=14x,AC=9,ACB=75+45=120(14x)2=92+(10 x)2-2910 xcos12039化简得 32x2-30 x-27=0,即 x=,或 x=-(舍去)216所以 BC=10 x=15,AB=14x=21,35 3BCsin12015又因为 sinBAC=2AB1421,BAC=3813,或BAC=14147(钝角不合题意,舍去)3813+45=8313答:巡逻艇应该沿北偏东 8313方向去追,经过 1.4 小时才追赶上该走私船.评注:在求解三角形中,我们可以根据正弦函数的定义
27、得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解.课堂练习课本第 16 页练习.课时小结解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。.课后作业习案作业六111.2 解三角形应用举例第四课时一、教学目标1、能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题,掌握三角形的面积公式的简单推导和应用2、本节课补充了三角形新的面积公式,巧妙设疑,引导学生证
28、明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。3、让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验二、教学重点、难点重点:推导三角形的面积公式并解决简单的相关题目难点:利用正弦定理、余弦定理来求证简单的证明题三、教学过程.课题导入创设情境师:以前我们就已经接触过了三角形的面积公式,今天我们
29、来学习它的另一个表达公式。在ABC 中,边 BC、CA、AB 上的高分别记为 ha、hb、hc,那么它们如何用已知边和角表示?生:ha=bsinC=csinB hb=csinA=asinC师:根据以前学过的三角形面积公式 S=hc=asinB=bsinaA1ah,应用以上求出的高的公式如 ha=bsinC 代入,21可以推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?211生:同理可得,S=bcsinA,S=acsinB22.讲授新课范例讲解例 1、在ABC 中,根据下列条件,求三角形的面积 S(精确到 0.1cm2)(1)已知 a=14 cm,c=24 cm,B=1
30、50;(2)已知 B=60,C=45,b=4 cm;(3)已知三边的长分别为 a=3 cm,b=4 cm,c=6 cm分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。解:略12例 2、如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为 68m,88m,127m,这个区域的面积是多少?(精确到 0.1cm2)?思考:你能把这一实际问题化归为一道数学题目吗?本题可转化为已知三角形的三边,求角的问题,再利用三角形的
31、面积公式求解。解:设 a=68m,b=88m,c=127m,根据余弦定理的推论,c2 a2 b21272 682882cosB=0.75322ca212768sinB=1 0.753220.6578应用 S=S 1acsinB21681270.65782840.38(m2)2答:这个区域的面积是 2840.38m2。变式练习 1:已知在ABC 中,B=30,b=6,c=63,求 a 及ABC 的面积 S提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。答案:a=6,S=93;a=12,S=183例 3、在ABC 中,求证:a2 b2sin2A sin2B;(1)22csin C
32、(2)a2+b2+c2=2(bccosA+cacosB+abcosC)分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,用正弦定理来证明证明:(1)根据正弦定理,可设a=b=c=k显然 k0,所以sinAsinBsinCa2 b2k2sin2A k2sin2Bsin2A sin2B左边=右边2ck2sin2Csin2C(2)根据余弦定理的推论,b2 c2 a2a2 b2 c2c2 a2b2右边=2(bc+ca+ab)2bc2ca2ab =(b2+c2-a2)+(c2+a2-b2)+(a2+b2-c2)=a2+b2+c2=左边变式练习 2:判断满足 sinC=sinsin
33、 A A sinsin B B条件的三角形形状coscos A A coscosB B13提示:利用正弦定理或余弦定理,“化边为角”或“化角为边”(解略)直角三角形.课堂练习课本第 18 页练习第 1、2、3 题.课时小结利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状。特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用。.课后作业习案作业七1421 数列的概念与简单表示法(一)一、教学要求:理解数列及其有关概念;了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会
34、根据其前几项的特征写出它的一个通项公式.二、教学重点、教学难点:重点:数列及其有关概念,通项公式及其应用.难点:根据一些数列的前几项,抽象、归纳出数列的通项公式.三、教学过程:导入新课“有人说,大自然是懂数学的”“树木的,。”,(一)、复习准备:1.在必修课本中,我们在讲利用二分法求方程的近似解时,曾跟大家说过这样一句话:“一尺之棰,日取其半,万世不竭”,即如果将初始量看成“1”,取其一半剩“半还剩“1”,再取一21111”,、,如此下去,即得到 1,、42482.生活中的三角形数、正方形数.阅读教材提问:这些数有什么规律?与它所表示的图形的序号有什么关系?(二)、讲授新课:1.教学数列及其有
35、关概念:(1)三角形数:1,3,6,10,(2)正方形数:1,4,9,16,一列数:(2)1,2,3,4的倒数排列成的1,(3)-1 的 1 次幂,2 次幂,3 次幂,排列成一列数:-1,1,-1,1,-1,。(4)无穷多个 1 排列成的一列数:1,1,1,1,。有什么共同特点?1.都是一列数;2.都有一定的顺序 数列的概念:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.辩析数列的概念:(1)“1,2,3,4,5”与“5,4,3,2,1”是同一个数列吗?与“1,3,2,4,5”呢?-数列的有序性(2)数列中的数可以重复吗?(3)数列与集合有什么区别?集合讲究:无序性、互
36、异性、确定性,数列讲究:有序性、可重复性、确定性。数列中每一个数叫数列的项,排在第一位的数称为这个数列的第 1 项(或首项),排在第二位的数称为这个数列的第 2 项、排在第n位的数称为这个数列的第n项.数列的一般形式可以写成a1,a2,a3,1 1 12 3 4,an,,简记为an.数列的分类:(1)按项数分:有穷数列与无穷数列,(2)按项之间的大小关系:递增数列、递减数列、常数列与摆动数列.数列中的数与它的序号有怎样的关系?序号可以看作自变量,数列中的数可以看作随着变动的量。把数列看作函数。即:数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取 值 对 应 的 一 列
37、 函 数 值。反 过 来,对 于 函 数y f(x),如 果15有意义,可以得到一个数列:f(1)f(2)f(3).f(i)(i 1、)如果数列an的第 n 项与项数之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。定义域解析式函数R 或 R 的子集数列(特殊的函数)y f(x)N*或它的子集an f(n)图象点的集合一些离散的点的集合2应用举例例 1、写出下列数列的一个通项公式,使它的前 4 项分别是下列各数:(1)1,1 11,;(2)2,0,2,02 34246810,;315356399练习:根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,1
38、1,;(2)(3)0,1,0,1,0,1,;(4)1,3,3,5,5,7,7,9,9,;(5)2,6,18,54,162,.例 2.写出数列1,2 345,.的一个通项公式,并判断它的增减性。4 7 10 13思考:是不是所有的数列都存在通项公式?根据数列的前几项写出的通项公式是唯一的吗?例 3根据下面数列an的通项公式,写出前五项:n(2)an(1)nnn 1例 4求数列2n29n3中的最大项。(1)an例 5 已知数列an求o的通项公式为an log2(n23)2,lg23是这个数列的第几项?三.小结:数列及其基本概念,数列通项公式及其应用.四、巩固练习:1.练习:P31 面 1、2、题、
39、2.作业:习案九。2.1数列的概念与简单表示法(二)教学要求:了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;理解数列的前 n 项和与an的关系.教学重点:根据数列的递推公式写出数列的前几项.教学难点:理解递推公式与通项公式的关系.教学过程:一、复习:1).以下四个数中,是数列 n n(n n 1 1)中的一项的是(A)A.380B.39C.32D.182).设数列为2 2,5 5,2 2 2 2,1111,则4 4 2 2是该数列的(C)A.第 9 项B.第 10 项C.第 11 项D.第 12 项163).数列1 1,2 2,3 3,4 4,5 5的
40、一个通项公式为an(1)n1n4)、图 2.1-5 中的三角形称为希尔宾斯基(Sierpinski)三角形。在下图 4 个三角形中,着色三角形的个数依次构成一个数列的前 4 项,请写出这个数列的一个通项公式,并在直角坐标系中画出它的图象。二、探究新知(一)、观察以下数列,并写出其通项公式:(1 1)1 1,3 3,5 5,7 7,9 9,1111,a an n 2 2n n1 1(2 2)0 0,2 2,4 4,6 6,8 8,a an n 2 2(n n1 1)(3 3)3 3,9 9,2727,8181,a an n 3 3n n思考:除了用通项公式外,还有什么办法可以确定这些数列的每一项
41、?(1 1)a a1 11 1,a a2 2 3 3 1 12 2 a a1 12 2,a a3 3 5 5 a a2 22 2,a an n a an n1 12 2(2 2)a a1 1 0 0,a an n a an n1 12 2(3 3)a a1 1 3 3,a an n 3 3a an n1 1(二)定义:已知数列 a an n 的第一项(或前几项),且任一项a an n与它的前一项a an n1 1(或前几项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式.练习:运用递推公式确定一个数列的通项:(1 1)2 2,5 5,8 8,1111,a a1 1 2 2,a
42、an n a an n1 13 3(n n 2 2)(2 2)1 1,1 1,2 2,3 3,5 5,8 8,1313,2121,a a1 11 1,a a2 21 1,a an n a an n1 1a an n2 2(n n 3 3)例 1:已知数列 a an n 的第一项是 1,以后的各项由公式a an n1 1五项1 1a an n1 1给出,写出这个数列的前3 3 5 5 8 81 1,2 2,解:2 2 3 3 5 517(n n 2)2)S Sn n S Sn n1 1若记数列若记数列 a an n 的前的前n n项之和为项之和为S Sn n,则则a an nS S(n n 1)
43、1)1 1练习:已知数列 a an n 的前 n 项和为:(1 1)S Sn n 2 2n n2 2n n;(2 2)S Sn n n n2 2 n n1 1,求数列 a an n 的通项公式.例 2.已知a a1 1 2 2,a an n1 1 a an n4 4,求a an n.解法一:可以写出:a1 2,a2 2,a3 6,a4 10,观察可得:an 2(n1)(4)24(n1)-观察法解法二:由题设:an1an 4,anan1 4an1an2 4an2an3 4a2a1 4相加得:ana1 4(n1)an 24(n1)例 3:已知a a1 1 2 2,a an n1 1 2 2a an
44、 n,求a an n.解法一:解法二:-迭乘法 -累加法a a1 1 2 2,a a2 2 2 2 2 2 2 22 2,a a3 3 2 2 2 22 2 2 23 3,观观察察可可得得:a an n 2 2三、课堂小结:1.递推公式的概念;2.递推公式与数列的通项公式的区别是:n n由an1 2an,a a 2a,即n 2nn1an1anan1an2a2 2n1an1an2an3a1an a12n1 2n(1)通项公式反映的是项与项数之间的关系,而递推公式反映的是相临两项(或 n 项)之间的关系.(2)对于通项公式,只要将公式中的 n 依次取1 1,2 2,3 3,4 4,即可得到相应的项
45、,而递推公式则要已知首项(或前 n 项),才可依次求出其他项.3用递推公式求通项公式的方法:观察法、累加法、迭乘法.四、作业1.阅读教材 P30-33面2.习案作业十22 等差数列(一)18一、教学目标1知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;2.过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中二、教学重、难点重点:理解等差数列的概念及其性质,探索并
46、掌握等差数列的通项公式;难点:概括通项公式推导过程中体现出的数学思想方法。三、教学设想创设情景上节课我们学习了数列。在日常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们先学习一类特殊的数列。探索研究由学生观察分析并得出答案:(放投影片)1、在现实生活中,我们经常这样数数,从 0 开始,每隔 5 数一次,可以得到数列:0,5,_,_,_,_,2、2000 年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目。该项目共设置了 7 个级别。其中较轻的 4 个级别体重组成数列(单位:kg):48,53,58,63。3、
47、水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为 18cm,自然放水每天水位降低 2.5m,最低降至 5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.54、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金(1+利率寸期).例如,按活期存入 10 000 元钱,年利率是 0.72%。那么按照单利,5 年内各年末的本利和分别是:时间年初本金(元)年末本利和(元)第 1 年第 2 年第 3 年第 4
48、 年第 5 年10 00010 00010 00010 00010 00010 07210 14410 21610 28810 360各年末的本利和(单位:元)组成了数列:10 072,10 144,10 216,10 288,10 360。思考:同学们观察一下上面的这四个数列:0,5,10,15,20,48,53,58,6318,15.5,13,10.5,8,5.510 072,10 144,10 216,10 288,10 360看这些数列有什么共同特点呢?引导学生观察相邻两项间的关系,由学生归纳和概括出,以上四个数列从第 2 项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两
49、项差为同一个常数的特点)。等差数列的概念等差数列:一般地,如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常19数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母 d 表示。那么对于以上四组等差数列,它们的公差依次是 5,5,-2.5,72。注意:公差 d 一定是由后项减前项所得,而不能用前项减后项来求;对于数列an,若anan1=d(d 是与 n 无关的数或字母),n2,nN,则此数列是等差数列,d 为公差;(3)若 d=0,则该数列为常数列提问:(1)你能举一些生活中的等差数列的例子吗?(2)如果在a与b中间插入一个数 A,使a,A,b成等差数列数列,那
50、么 A 应满足什么条件?由学生回答:因为 a,A,b 组成了一个等差数列,那么由定义可以知道:A-a=b-A所以就有A a b2由三个数 a,A,b 组成的等差数列可以看成最简单的等差数列,这时,A 叫做 a 与 b 的等差中项。不难发现,在一个等差数列中,从第2 项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。如数列:1,3,5,7,9,11,13中,5 是 3 和 7 的等差中项,1 和 9 的等差中项。9 是 7 和 11 的等差中项,5 和 13 的等差中项。看来,a2 a4 a1 a5,a4 a6 a3 a7从而可得在一等差数列中,若 m+n=p+q则am an