《动画展示直线与圆锥曲线的位置关系优秀课件.ppt》由会员分享,可在线阅读,更多相关《动画展示直线与圆锥曲线的位置关系优秀课件.ppt(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、动画展示直线与圆锥曲线的位置关系第1页,本讲稿共29页一知识与方法一知识与方法直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系:几几几几何何角角度度度度直线与圆的位置关系直线与圆的位置关系:1)相离相离 2)相切相切 3)相交相交有两个交点有两个交点有两个交点有两个交点没有交点没有交点没有交点没有交点有一个交点有一个交点有一个交点有一个交点1)相离)相离2)相切)相切3)相交)相交有一个交点有一个交点有一个交点有一个交点第2页,本讲稿共29页直线l绕着点(0,3)旋转过程中,与椭圆 的交点情况如何?L的斜率变化情况如何?-22xyL2相切相切L3相交相交L4相切相切第3页,本讲稿共29页-22
2、xy3L0L1L2L3L4直线直线L L绕着点绕着点(0(0,3)3)旋转过程中,直线旋转过程中,直线L L与双曲线与双曲线 的的 交交点情况如何?点情况如何?L L的斜率变化情况如何?的斜率变化情况如何?第4页,本讲稿共29页xyL1L2L3直线直线L L绕着点绕着点(-1(-1,3)3)转过程中,直线转过程中,直线L L与抛物线与抛物线 的交的交 点情况如何?点情况如何?L L的斜率变化情况如何?的斜率变化情况如何?第5页,本讲稿共29页直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系1.1.1.1.直线与椭圆的位置关系直线与椭圆的位置关系直线与椭圆的位置关系直线与椭圆的位置关系:设直线与
3、椭圆方程分别为设直线与椭圆方程分别为设直线与椭圆方程分别为设直线与椭圆方程分别为:y=kx+m:y=kx+m:y=kx+m:y=kx+m与与与与 :联立方程组联立方程组联立方程组联立方程组y=kx+my=kx+my=kx+my=kx+mb b b b2 2 2 2x x x x2 2 2 2+a+a+a+a2 2 2 2y y y y2 2 2 2=a=a=a=a2 2 2 2b b b b2 2 2 2消去消去消去消去y y y y得得得得:Ax:Ax:Ax:Ax2 2 2 2+Bx+C=0+Bx+C=0+Bx+C=0+Bx+C=0(1)(1)00相交相交相交相交(2)(2)=0=0=0=0
4、相切相切相切相切(3)(3)0000000相交相交相交相交=0=0相切相切相切相切00=00000相交相交相交相交=0=0相切相切相切相切0000000相交相交相交相交=0=0相切相切相切相切0000=00相交相交2相切相切1相离相离0双曲线双曲线双曲线双曲线,直线与直线与直线与直线与渐近线平行渐近线平行渐近线平行渐近线平行抛物线抛物线抛物线抛物线,直线直线直线直线与与与与对称轴平行对称轴平行对称轴平行对称轴平行或重合或重合或重合或重合相交相交1相交相交1第13页,本讲稿共29页2.2.弦:直线被圆锥曲线截得的线段称为圆锥曲线的弦。弦:直线被圆锥曲线截得的线段称为圆锥曲线的弦。焦点弦:若弦过圆
5、锥曲线的焦点弦:若弦过圆锥曲线的焦点焦点叫叫焦点弦焦点弦;通径:若通径:若焦点弦焦点弦垂直垂直于于焦点所在的圆锥曲线的对称轴焦点所在的圆锥曲线的对称轴,此时焦,此时焦点弦也叫点弦也叫通径通径。=第14页,本讲稿共29页xy0AADxy01.直直线线y=kx-k+1与与椭圆椭圆 的位置关系的位置关系为为()(A)相交相交 (B)相切相切 (C)相离相离 (D)不确定不确定2.已已知知双双曲曲线线方方程程x2-y2=1,过过P(0,1)点点的的直直线线l与与双双曲曲线线 只有一个公共点,只有一个公共点,则则l的条数的条数为为()(A)4 (B)3 (C)2 (D)13.过过点点(0,1)与与抛抛物
6、物线线y2=2px(p0)只只有有一一个个公公共共点点的的直直线线条数是条数是()(A)0 (B)1 (C)2 (D)3第15页,本讲稿共29页答案:C第16页,本讲稿共29页【例例1 1】已知直线已知直线y y(a a1)1)x x1 1与曲线与曲线y y2 2axax恰有一恰有一个公共点,求实数个公共点,求实数a a的值的值分析:分析:先用代数方法即联立方程组解决,再从几何上验先用代数方法即联立方程组解决,再从几何上验证结论证结论第17页,本讲稿共29页第18页,本讲稿共29页求椭圆求椭圆被点被点平分的弦平分的弦所在的直线方程所在的直线方程 .第19页,本讲稿共29页已知在平面直角坐标系已
7、知在平面直角坐标系中的一个椭圆,它的中心在原点,中的一个椭圆,它的中心在原点,,右顶点为右顶点为,设点设点.左焦点为左焦点为(1 1)求该椭圆的标准方程;)求该椭圆的标准方程;2 2)若)若是椭圆上的动点,求线段是椭圆上的动点,求线段中点中点的轨迹方程;的轨迹方程;(3 3)过原点)过原点的直线交椭圆于点的直线交椭圆于点求求面积的最大值。面积的最大值。第20页,本讲稿共29页第21页,本讲稿共29页第22页,本讲稿共29页第23页,本讲稿共29页(1)对归纳对归纳型型问题问题,要通,要通过观过观察、比察、比较较、分析、抽象、分析、抽象、概括、猜概括、猜测测来完成;来完成;(2)对对存在性存在性
8、问题问题,从适合条件的,从适合条件的结论结论存在入手,找存在入手,找出一个正确出一个正确结论结论即可即可第24页,本讲稿共29页第25页,本讲稿共29页第26页,本讲稿共29页第27页,本讲稿共29页规律总结:探索性试题常见的题型有两类:探索性试题常见的题型有两类:一是给出问题对象的一些特殊关系,要求解一是给出问题对象的一些特殊关系,要求解题者探索出一般规律,并能论证所得规律的题者探索出一般规律,并能论证所得规律的正确性,通常要求对已知关系进行观察、比正确性,通常要求对已知关系进行观察、比较、分析,然后概括出一般规律较、分析,然后概括出一般规律第28页,本讲稿共29页二是只给出条件,要求解题者论证在此条件下会不会出二是只给出条件,要求解题者论证在此条件下会不会出现某个结论现某个结论这类题型常以适合某种条件的结论这类题型常以适合某种条件的结论“存在存在”、“不存在不存在”、“是否存在是否存在”等语句表述等语句表述解答这类问题,一般要解答这类问题,一般要先先对结论作出对结论作出肯定存在假设肯定存在假设,然后然后由此由此肯定的假设出发肯定的假设出发,结合,结合已知条件进行推理论证已知条件进行推理论证,若导致若导致合理的结论合理的结论,则存在性也随之解决;若,则存在性也随之解决;若导致矛盾导致矛盾,则否定了存在性则否定了存在性第29页,本讲稿共29页