《实验第5章电感式传感器讲课稿.doc》由会员分享,可在线阅读,更多相关《实验第5章电感式传感器讲课稿.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Good is good, but better carries it.精益求精,善益求善。实验第5章电感式传感器-实验名称:电感式传感器测试实验一、实验目地:1 了解差动变压器的基本结构及原理,通过实验验证差动变压器的基本特性。2 利用差动螺管式电感传感器进行位移测量。3 了解不同的激励频率对差动螺管式电感传感器的影响。实验一.差动变压器的基本结构及原理二、实验原理:差动变压器由衔铁、初级线圈、次级线圈和线圈骨架等组成。初级线圈做为差动变压器激励用,相当于变压器的原边,次级线圈由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器的副边。差动变压器是开磁路,工作是建立在互感基础上的。其原理
2、及输出特性见图(9)R1LK1R3R2LoLoMaMbLv5KHZ示波器第一通道第二通道三、实验环境差动变压器、音频振荡器、测微头、示波器。四、实验步骤:1按图接线,差动变压器初级线圈必须从音频振荡器LV端功率输出,双线示波器第一通道灵敏度500mv/格,第二通道10mv格。2音频振荡器输出频率5KHZ,输出值VPP2V。3用手提压变压器磁芯,观察示波器第二通道波形是否能过零翻转,如不能则改变两个次级线圈的串接端。4旋动测微头,带动差动变压器衔铁在线圈中移动,从示波器中读出次级输出电压VPP值,读数过程中应注意初、次级波形的相位关系。位移mm电压V5.根据表格所列结果,画出Vop-pX曲线,指
3、出线性工作范围。(可附在后面)实验二.差动螺管式电感传感器位移测量二、实验原理:利用差动变压器的两个次级线圈和衔铁组成。衔铁和线圈的相对位置变化引起螺管线圈电感值的变化。次级二个线圈必须呈差动状态连接,当衔铁移动时将使一个线圈电感增加,而另一线圈的电感减小。三、实验环境差动变压器、音频振荡器、电桥、差动放大器、移相器、相敏检波器、低通滤波器、电压表、示波器、测微头。四、实验步骤:1差动变压器二个次级线圈组成差动状态,按图接线,音频振荡器LV端做为恒流源供电,差动放大器增益适度。差动变压器的两个线圈和电桥上的两个固定电阻R组成电桥的四臂,电桥的作用是将电感变化转换成电桥电压输出。2旋动测微头使衔
4、铁在线圈中位置居中,此时LoLo,系统输出为零。3当衔铁上、下移动时,LoLo,电桥失衡就有输出,大小与衔铁位移量成比例,相位则与衔铁移动方向有关,衔铁向上移动和向下移动时输出波形相位相差约180,由于电桥输出是一个调幅波,因此必须经过相敏检波器后才能判断电压极性,以衔铁位置居中为起点,分别向上、向下各位移5mm,记录V,X值,做出VX曲线,求出灵敏度。XmmV实验三.激励频率对电感传感器的影响二、实验原理:改变输入信号的频率,观察输出灵敏度受到的影响。三、实验环境差动变压器、电桥、音频振荡器、差动放大器、双线示波器、测微头。四、实验步骤:1差动放大器增益适度,调零,按图接线。2装上测微头,调整衔铁处于线圈中间位置,调节电桥使系统输出为最小。3选择不同的音频振荡器频率,旋动测微头,移动衔铁,每隔1mm从示波器读出VP-P值,填入表格X(mm)Y(V)f(Hz)1000200040006000800010K5根据所测数据在同一坐标上做出VX曲线,计算灵敏度,并做出灵敏度与频率的关系曲线。由此可以看出,差动螺管式电感传感器的灵敏度与频率特性密切相关,在某一个特定频率时,传感器最为灵敏,在其两边,灵敏度都有所下降,故测试系统中应选用这个激励频率。-