太阳能小屋的设计之数学建模论文教学教材.doc

上传人:1595****071 文档编号:52310461 上传时间:2022-10-22 格式:DOC 页数:13 大小:442KB
返回 下载 相关 举报
太阳能小屋的设计之数学建模论文教学教材.doc_第1页
第1页 / 共13页
太阳能小屋的设计之数学建模论文教学教材.doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《太阳能小屋的设计之数学建模论文教学教材.doc》由会员分享,可在线阅读,更多相关《太阳能小屋的设计之数学建模论文教学教材.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Good is good, but better carries it.精益求精,善益求善。太阳能小屋的设计之数学建模论文-太阳能小屋的设计论文摘要随着当今社会资源的匮乏,合理利用能源显得越来越重,其中太阳能做为一种新能源,给人们的生活和生产带来了很多帮助。在设计太阳能小屋时,需在建筑物表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴

2、附或架空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋表面的优化铺设是很重要的问题。问题1仅考虑贴附安装方式,那么光伏电池组件的夹角就可以忽略了小屋的表面安装的个数根据其面积比例就可以计算出来。问题2的架空方式考虑到电池板的朝向与倾角会影响光伏电池的工作效率,会使小屋产电量更大。问题3中设计的小屋应尽可能多的装电池组件,以使发电量总量尽可能大。在问题一中,根据各种光伏电池组件的连接方式和平均发电功率的比较和逆变器的价格(写出数据的对比),选择电池组件*和逆变器*,每个面的面积选择了*个逆变器利用表格数据作图得到在问题二中,根据大同市的每个面得辐射总量知道太阳照射比较强的是*面,于是再根据

3、其每个方向的辐射量的比较选择按*度角安装电池组件在问题三中,根据问题一和问题二的比较,知道用架空方式设计小屋会更有效率,小屋的结构比例和安装方向选择了电池组件*和逆变器*关键字:光伏电池、光伏电池组件、逆变器、辐射强度一、 问题的重述1.基本情况在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架

4、空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。2.需要解决的问题问题1:请根据山西省大同市的气象数据,仅考虑贴附安装方式,选定光伏电池组件,对小屋(见附件2)的部分外表面进行铺设,并根据电池组件分组数量和容量,选配相应的逆变器的容量和数量。问题2:电池板的朝向与倾角均会影响到光伏电池的工作效率,请选择架空方式安装光伏电池,重新考虑问题1。问题3:根据附件7给出的小屋建筑要求,请为大同市重新设计一个小屋,要求画出小屋的外形图,并对所设计小屋的外表面优化铺设光伏电池,给出铺设及分组连接方式,选配逆变器,计算相应结果。二、问题的分析目前,我国及国际上的屋顶太阳

5、能光热和光电利用技术已经比较成熟。利用太阳能光热系统可以给建筑提供生活热水或是冬季的暖源;利用太阳能光电系统可以提供建筑的日常用电5。太阳能光伏建筑一体化指的是太阳能发电,即每座建筑就是一座发电站,发出的电首先能够满足建筑自身的需求,多余的进入电网传输出去6。所谓太阳能屋顶,是将太阳能电池板安装在建筑物的屋顶,引出端经过控制器、逆变器与公共电网相连接,由太阳能电池板、电网并联向用户供电,组成户用并网光伏系统。(1)单晶硅太阳能电池目前单晶硅太阳能电池的光电转换效率为15%左右,最高的近24,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。

6、由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。单晶硅太阳能电池转换效率是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替

7、代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。(2)多晶硅太阳能电池多晶硅太阳电池的制作工艺与单晶硅太阳电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约12左右(2004年7月1日日本夏普上市效率为14.8%的世界最高效率多晶硅太阳能电池)。从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。晶体硅光电池晶体硅光电池有单晶硅与多晶硅两大类,用P型(或n型)硅衬底,通过磷(或硼)扩散形成Pn结成制作,生产技术

8、成熟,是光伏市场上的主导产品。采用埋层电极、表面钝化、强化陷光、密栅工艺、优化背电极及接触电极等技术,提高材料中的载流子收集效率,优化抗反肘膜、凹凸表面、高反射背电极等方式,光电转换效率有较大提高。单晶硅光电池面积有限,目前比较大的为10至20cm的圆片,年产能力46MW/a。目前主要课题是继续扩大产业规模,开发带状硅光电池技术,提高材料利用率。国际公认最高效率在AM1.5条件下为24,空间用高质量的效率在AMO条件约为13.518地面用大量生产的在AM1条件下多在1118之间。以定向凝固法生长的铸造多晶硅锭代替晶硅,可降低成本,但效率较低。优化正背电极的银浆和铝浆丝网印刷,磨图抛工艺,千方百

9、计进一步降成本,提高效率,大晶粒多晶硅光电池的转换效率最高达18.6%。非晶硅光电池aSi(非晶硅)光电池一般采用高频辉光放电方法使硅烷气体分解沉积而成。由于外解沉积温度低,可在玻璃、不锈钢板、陶瓷板、柔性塑料片上沉积约1m厚的薄膜,易于大面积化(05rnl.0m),成本较低,多采用pin结构。为提高效率和改善稳定性,有时还制成三层Pin等多层叠层式结构,或是插入一些过渡层。其商品化产量连续增长,年产能力45MWa,10MW生产线已投入生产,全球市场用量每月在1千万片左右,居薄膜电池首位。发展集成型aSi光电池组件,激光切割的使用有效面积达90以上,小面积转换效率提高到14.6,大面积大量生产

10、的为810,叠层结构的最高效率为21。研发动向是改善薄膜特性,精确设计光电池结构和控制各层厚度,改善各层之间界面状态,以求得高效率和高稳定性。多晶硅光电池PSi(多晶硅,包括微品)光电池没有光致衰退效应,材料质量有所下降时也不会导致光电池受影响,是国际上正掀起的前沿性研究热点。在单晶硅衬底上用液相外延制备的pSi光电池转换效率为15.3,经减薄衬底,加强陷光等加工,可提高到23.7%,用CVD法制备的转换效率约为12.6l7.3%。采用廉价衬底的psi薄膜生长方法有PECVD和热丝法,或对asi:H材料膜进行后退火,达到低温固相晶化,可分别制出效率9.8%和9.2%的无退化电池。微晶硅薄膜生长

11、与asi工艺相容,光电性能和稳定性很高,研究受到很大重视,但效率仅为7.7大面积低温psi膜与si组成叠层电池结构,是提高比aS光电池稳定性和转换效率的重要途径,可更充分利用太阳光谱,理论计算表明其效率可在28以上,将使硅基薄膜光电池性能产生突破性进展。铜烟硒光电池CIS(铜锁硒)薄膜光电池己成为国际先伏界研究开发的热门课题,它具有转换效率高(已达到17.7),性能稳定,制造成本低的特点。CIS光电池一般是在玻璃或其它廉价衬底上分别沉积多层膜而构成的,厚度可做到23rn,吸收层CIS膜对电池性能起着决定性作用。现已开发出反应共蒸法和硒化法(溅射、蒸发、电沉积等)两大类多种制备方法,其它外层通常

12、采用真空蒸发或溅射成膜。阻碍其发展的原风是工艺重复性差,高效电池成品率低,材料组分较复杂,缺乏控制薄膜生长的分析仪器。CIS光电池正受到产业界重视,一些知名公司意识到它在未来能源市场中的前景和所处地位,积极扩人开发规模,着手组建中试线及制造厂。二、 模型假设太阳能电池组件并联数Np在确定NP之前,我们先确定其相关量的计算方法。将太阳能电池方阵安装地点的太阳能日辐射量Ht,转换成在标准光强下的平均日辐射时数H(日辐射量参见表1):H=Ht2.77810000h(3)式中:2.77810000(h?m2/kJ)为将日辐射量换算为标准光强(1000W/m2)下的平均日辐射时数的系数。太阳能电池组件日

13、发电量QpQp=IocHKopCzAh(4)式中:Ioc为太阳能电池组件最佳工作电流;Kop为斜面修正系数(参照表1);Cz为修正系数,主要为组合、衰减、灰尘、充电效率等的损失,一般取0.8。两组最长连续阴雨天之间的最短间隔天数Nw,此数据为本设计之独特之处,主要考虑要在此段时间内将亏损的蓄电池电量补充起来,需补充的蓄电池容量Bcb为:Bcb=AQLNLAh(5)太阳能电池组件并联数Np的计算方法为:Np=(BcbNwQL)/(QpNw)(6)式(6)的表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的最短间隔天数内所发电量,不仅供负载使用,还需补足蓄电池在最长连续阴雨天内所亏损电量。(3)太阳能电池方阵的功率计算根据太阳能电池组件的串并联数,即可得出所需太阳能电池方阵的功率P:P=PoNsNpW(7)式中:Po为太阳能电池组件的额定功率。BC=AQLNLTOCCAh(1)式中:A为安全系数,取1.11.4之间;QL为负载日平均耗电量,为工作电流乘以日工作小时数;NL为最长连续阴雨天数;TO为温度修正系数,一般在0以上取1,10以上取1.1,10以下取1.2;-

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁