全桥移相开关电源设计复习过程.doc

上传人:1595****071 文档编号:52309294 上传时间:2022-10-22 格式:DOC 页数:45 大小:503.50KB
返回 下载 相关 举报
全桥移相开关电源设计复习过程.doc_第1页
第1页 / 共45页
全桥移相开关电源设计复习过程.doc_第2页
第2页 / 共45页
点击查看更多>>
资源描述

《全桥移相开关电源设计复习过程.doc》由会员分享,可在线阅读,更多相关《全桥移相开关电源设计复习过程.doc(45页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Good is good, but better carries it.精益求精,善益求善。全桥移相开关电源设计-摘要上世纪60年代开始起步的PWM功率变换技术出现了很大的发展,但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。本文介绍了由UC3875构成的相移式PWM控制器的工作原理,并在此基础之上进一步设计了由UC3875构成的全桥移相零电压开关(ZVS)PWM开关电源。该电路能以隔离方式驱动功率MOSFET,从而提高了电路的稳定性;由于采用了ZVS技术使电路在高频情况下能够大大减小开关损耗,提高了整个电路的工作效率。阐述了零电压开关技术

2、(ZVS)在移相全桥变换器电路中的应用。分析了电路原理和各工作模态,着重分析了开关管的零电压开通和关断的过程实现条件,并且提出了相关的应用领域和今后的发展方向。本文选择了全桥移相控制ZVS-PWM谐振电路拓扑,阐述了零电压开关技术(ZVS)在移相全桥变换器电路中的应用。分析了电路原理和各工作模态。关键词:零电压开关技术、全桥移相控制、谐振变换器Abstract60soflastcenturytostartthePWMpowerconversiontechnologyhadmajordevelopment,butbecauseofitsfrequencyregulatorcontrolmetho

3、dcommonlyusedtomakesoft-switchingrangeislimited,andthecomplexityofitsdesignisnotconducivetooptimaldesignofoutputfilter.ThisarticledescribesthecompositionoftheUC3875phaseshiftPWMcontrollerworks,andonthisbasisforfurtherdesigncomposedbytheUC3875phaseshiftfull-bridgezerovoltageswitching(ZVS)PWMswitching

4、powersupply.ToisolatethewaythecircuitcandrivethepowerMOSFET,therebyenhancingthestabilityofthecircuit;Asaresultofhigh-frequencyZVStechnologytothecircuitincaseofswitchinglossescanbegreatlyreduced,improvingtheefficiencyoftheentirecircuit.Zero-voltageswitchingtechnologydescribed(ZVS)phaseshiftedfullbrid

5、geconverterinthecircuitapplication.Analysisofthecircuitandtheworkingmode.Analyzesthezero-voltageswitchturnonandoffconditionsoftheprocessofimplementation.Andputforwardtherelevantapplicationareasandfuturedevelopmentdirection.ThisselectedphaseshiftcontrolfullbridgeZVS-PWMresonantcircuittopology,zerovol

6、tageswitchingtechnologydescribed(ZVS)phaseshiftedfullbridgeconverterinthecircuitapplication.Analysisofthecircuitandtheworkingmode.Keywords:zero-voltageswitchingtechnology,full-bridgephase-shiftingcontrol,resonantconverter目录摘要1ABSTRACT2第一章引言41.1开关电源简介41.2开关电源的发展动向41.3本设计的主要内容5第二章相关电力电子器件介绍62.1二极管62.2

7、双极型晶体管72.3光电三极管82.4场效应管8第三章UC3875原理和应用103.1uc3875简介103.1.1uc3875各个管脚简要说明103.1.2uc3875的特点123.2UC3875的应用12第四章PWM控制技术144.1PWM控制144.1.1PWM控制的基本原理144.1.2PWM控制具体过程154.1.3PWM控制的优点154.1.4几种PWM控制方法164.2PWM逆变电路及其控制方法184.2.1计算法和调制法184.2.2异步调制和同步调制21第五章电力变换电路介绍235.1整流电路235.1.1桥式不可控整流电路235.1.2单相桥式全控整流电路245.2逆变电路

8、255.2.1逆变电路的基本工作原理265.2.2电压型逆变电路26第六章ZVS-PWM全桥移相开关电源设计286.1电路图设计286.2电路图原理28总结32致谢33参考文献34第一章引言1.1开关电源简介开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向

9、低输出电力端移动,这为开关电源提供了广阔的发展空间。开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。SCR在开关电源输入整流电路及软启动电路中有少量应用,GTR驱动困难,开关频率低,逐渐被IGBT和MOSFET取代。开关电源的三个条件1、开关:电力电子器件工作在开关状态而不是线性状态2、高频:电力电子器件工作在高频而不是接近工频的低频3、直流:开关电源

10、输出的是直流而不是交流人们在开关电源技术领域是边开发相关电力电子器件,边开发开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述。1.2开关电源的发展动向开关电源在发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,

11、因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率。对于高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的可靠性大大提高。模块化是开关电源发展的总体趋势,可以采

12、用模块化电源组成分布式电源系统,可以设计成N1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化其噪声也必将随着增大,而采用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术的实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,以使得该项技术得以实用化。电力电子技术的不断创新,使开关电源产业有着广阔的发展前景。要加快我国开关电源产业的发展速度,就必须走技术创新之路,走出有中国特色的产学研联合发展之路,为我国国民经济的高速发展做出贡献。1.3本设计的主要内容利用相移脉宽调制零电压谐振技术和相移脉宽调制谐振控制器UC3875的性

13、能及在其在功率变换中的应用。采用UC3875设计全桥零电压软开关功率变换电路,控制电路简单,性能稳定可靠,效率达90%。本文第二、三、四章介绍了相关电力电子期间,整流、逆变电路基础知识,UC3875的特性以及PWM控制技术。第五章系统的阐述了本设计的全部内容,重点介绍了ZVS逆变电路的各个状态的工作模式,系统的分析了UC3875控制电路设计原理,并对电压检测反馈电路和过电流保护进行了设计和分析,使电路的稳定性和安全性进一步提高。第二章相关电力电子器件介绍在电气设备或电力系统中,直接承担电能的变换或控制任务的电路被称为主电路。电力电子器件是指可直接用于处理电能的主电路中,实现电能的变换或控制的电

14、子器件。同我们在学习电子技术基础时广泛接触的处理信息的电子器件一样,广义上电力电子器件可分为电真空器件和半导体器件两类。但是,自20世纪50年代以来,除了在频率很高(如微波)的大功率高频电源中还在使用真空管外,基于半导体材料的电力电子器件已逐步取代了以前的汞弧整流器、闸流管等电真空器件,成为电能变换和控制领域的绝对主力。因此,电力电子器件目前也往往专指电力半导体器件。与普通半导体器件一样,目前电力半导体器件所采用的主要材料仍然是硅。2.1二极管将PN结用外壳封装起来,并加上电极引线就构成了半导体二极管,简称二极管。由P区引出的电极为阳极,由N区引出的电极为阴极。与PN结一样,二极管具有单向导电

15、性。但是,由于二极管存在半导体体电阻和引线电阻,所以当外加正向电压时,在电流相同的情况下,二极管的端电压大于PN结上的压降;或者说,在外加正向电压相同的情况下,二极管的正向电流要小于PN结的电流;在大电流情况下,这种情况更为明显。另外,由于二极管表面漏电流的存在,使外加反向电压时的电流增大。实测二极管的伏安特性时发现,只有在正向电压足够大时,正向电流才从零隋端电压按指数规律增大。使二极管开始导通的临界电压称为开启电压UON。当二极管所加反向电压的数值足够大时,反向电流为Is。反向电压太大将使二极管击穿,不同型号二极管的击穿电压差别很大,从几十伏到几千伏。稳压二极管是一种硅材料制成的面接触型晶体

16、二极管,简称稳压管。稳压管在反向击穿时,在一定的电流范围内(或者说在一定的功率损耗范围内),端电压几乎不变,表现出稳压特性,因而广泛用于稳压电源与限幅电路之中。稳压管有着与普通二极管相似的伏安特性,其正向特性为指数曲线。当稳压管外加反向电压的数值大到一定程度时则击穿,击穿区的曲线很陡,几乎平行于纵轴,表现出很好的稳压特性。只要控制流不超过一定值,管子就不会因为过热而损坏。稳压管的符号如图2.1所示。图2.1二极管符号2.2双极型晶体管双极型晶体管(BJT)又称晶体三极管、半导体三极管等,后面简称晶体管。晶体管分为小功率管,中功率管,大功率管。根据不同的掺杂方式在同一个硅片上制造出三个掺杂区域,

17、并形成两个PN结,就构成晶体管。采用平面工艺制成的NPN型材料晶体管为于中间的P区称为基区,它很薄且杂质浓度很低;位于上层的N区是发射区,掺杂浓度很高;位于下层的N去是集电区,因而集电结面积很大;晶体管的外特性与三个区域的上述特点紧密相关。它们所引出的三个电极分别为基极b、发射极e和集电极c。图2.2(a)所示为NPN型管和PNP型管的符号。图2.2(a)晶体管符号放大是对模拟信号最基本的处理。在生产实际和科学实验中,从传感器获得的信号都很微弱,只有经过放大后才能作进一步的处理,或者使之具有足够的能量来推动执行机构。晶体管是放大电路的核心原件,它能够控制能量的转换,将输入的任何微小变化不失真地

18、放大输出,放大的对象是变化量。图2.2(b)所示为基本的放大电路,Ui为输入电压信号,它接入基极-发射极回路,称为输入回路;放大后的信号在集电极-发射极回路,称为输出回路。由于发射极是两个回路的公共端,故称该电路为共射放大电路。因为晶体管工作在放大状态的外部条件是发射结正向偏置且集电结反向偏置,所以在输入回路应加基极电源VBB;在输出回路应加集电极电源VCC。VBB和VCC的极性应如图2.2(b)所示,且VCC大于VBB。晶体管的放大作用表现为小的基极电流可以控制大的集电极电流。图2.2(b)基本共射放大电路2.3光电三极管光电三极管依据光照的强度来控制集电极电流的大小,其功能可等效为一只光电

19、二极管与一只晶体管相连,并仅引出集电极与发射极。如图2.3(a)所示,其符号如图(b)所示,常见外形如图(c)所示.图2.3(a)等效电路图(b)符号(c)实物图光电三极管与普通三极管的输出特性曲线想类似,只是将参变量基极电流IB用入射光照度E取代,如图2.3(d)所示。无光照时的集电流称为暗电流ICEO,他比光电二极管的暗电流约大两倍;而且受温度的影响很大,温度每上升25。ICEO上升约10背。有光照时的集电极电流称为光电流。当管压降UCE足够大时,ic几乎仅仅决定于入射光照度E。对于不同型号的光电三极管,当入射光照度E为1000lx时,光电流从小于1000mA到几毫安不等。使用光电三极管时

20、,也应特别注意其反向击穿电压、最高工作电压、最大集电极功耗等极限参数。图2.3(d)光电三极管的输出特性曲线图2.4场效应管场效应管是利用输入回路的电场效应来控制输出回路电流的一种半导体器件,并以此命名。由于它仅靠半导体中的多数载流子导电,又称单极型晶体管。场效应管不但具备双极型晶体管体积小、重量轻、寿命长等优点,而且输入回路的内阻高达107-1012,噪声低,热稳定性好,抗辐射能力强,且比后者耗电省,这些优点使之从60年代诞生起就广泛地应用于各种电力电路之中。如果在制造MOS管时,在SiQ2绝缘层中掺人大量正离子,那么即使UGS=0,在正离子作用下P型衬底表层也存在反型层,即漏一源之间存在导

21、电沟道,只要在漏一源间加正向电压,就会产生漏极电流,如图2.4(a)所示。并且UGS为正时,反型层变宽,沟道电阻变小,iD增大;反之,UGS为负时,反型层变窄,沟道电阻变大,iD减小。而当UGS从零减小到一定值时,反型层消失,漏一源之间导电沟道消失,iD=0。此时的UGS称为夹断电压U(off)。与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压也为负值;但是,前者只能在UGS0的情况下工作,而后者的UGS可以在正、负值的一定范围内实现对iD的控制,且仍保持栅一源间有非常大的绝缘电阻。耗尽型MOS管的符号见图2.4(b)所示。图2.4(a)结构示意图图2.4(b)符号图第三章UC3875

22、原理和应用3.1uc3875简介Unitrode公司的UC3875,它有4个独立的输出驱动端可以直接驱动四只功率MOSFET管,见图3.1,其中OUTA和OUTB相位相反,OUTC和OUTD相位相反,而OUTC和OUTD相对于OUTA和OUTB的相位是可调的,也正是通过调节的大小来进行PWM控制的。图3.1uc3875引脚图3.1.1uc3875各个管脚简要说明UC3875有20脚和28脚两种,这里仅介绍20脚的UC3875的管脚功能,表3.1.1为管脚功能简要说明。表3.1.1uc3875管脚功能表PIN功能PIN功能1VREF基准电压10VCC电源电压2E/AOUT误差放大器的输出11VI

23、N芯片供电电源3E/A误差放大器的反相输入12PWRGND电源地4E/A误差放大器的同相输入16FREQSET频率设置端5C/S电流检测17CLOCK/SYNC时钟/同步6SOFTSTART软起动18SLOPE陡度7,15DELAYSETA/B,C/D输出延迟控制19RAMP斜波14,13,9,8OUTAOUTD输出AD20GND信号地管脚1可输出精确的5V基准电压,其电流可以达到60mA。当VIN比较低时,芯片进入欠压锁定状态VREF消失。直到VREF达到4.75V以上时才脱离欠压锁定状态。最好的办法是接一个0.1F旁路电容到信号地。管脚2为电压反馈增益控制端,当误差放大器的输出电压低于1V

24、时实现0相移。管脚3为误差放大器的反相输入端,该脚通常利用分压电阻检测输出电源电压。管脚4为误差放大器的同相输入端,该脚与基准电压相连,以检测E/A-端的输出电源电压。管脚5为电流检测端,该脚为电流故障比较器的同相输入端,其基准设置为内部固定2.5V(由VREF分压)。当该脚的电压超过2.5V时电流故障动作,输出被关断,软起动复位,此脚可实现过流保护。管脚6为软起动端,当输入电压(VIN)低于欠压锁定阈值(10.75V)时,该脚保持地电平,当VIN正常时该脚通过内部9A电流源上升到4.8V,如果出现电流故障时该脚电压从4.8V下降到0V,此脚可实现过压保护。管脚7、15为输出延迟控制端,通过设

25、置该脚到地之间的电流来设置死区,加于同一桥臂两管驱动脉冲之间,以实现两管零电压开通时的瞬态时间,两个半桥死区可单独提供以满足不同的瞬态时间。管脚14、13、9、8为输出OUTAOUTD端,该脚为2A的图腾柱输出,可驱动MOSFET和变压器。管脚10为电源电压端,该脚提供输出级所需电源,Vcc通常接3V以上电源,最佳为12V。此脚应接一旁路电容到电源地。管脚11为芯片供电电源端,该脚提供芯片内部数字、模拟电路部分的电源,接于12V稳压电源。为保证芯片正常工作,在该脚电压低于欠压锁定阈值(10.75V)时停止工作。此脚应接一旁路电容到信号地。管脚12为电源地端。其它相关的阻容网络与之并联,电源地和

26、信号地应一点接地以降低噪声和直流降落。管脚16为频率设置端,该脚与地之间通过一个电阻和电容来设置振荡频率,具体计算公式为:f=4/(RfCf)。管脚17为时钟/同步端,作为输出,提供时钟信号;作为输入,该脚提供一个同步点。最简单的用法是:具有不同振荡频率的多个UC3875可通过连接其同步端,使它们同步工作于最高频率。该脚也可使其同步工作于外部时钟频率,但外部时钟频率需大于芯片的时钟频率。管脚18为陡度端,该脚接一个电阻Rs将产生电流以形成斜波,连接这个电阻到输入电压将提供电压反馈。管脚19为斜波端,该脚是PWM比较器的一个输入端,可通过一个电容CR连接到地,电压以下式陡度建立dv/dt=Vs/

27、(RsCR)。该脚可通过很少的器件实现电流方式控制,同时提供陡度补偿。管脚20为信号地端,GND是所有电压的参考基准。频率设置端(FREQSET)的振荡电容(Cf),基准电压(VREF)端的旁路电容和VIN的旁路电容以及RAMP端斜波电容(CR)都应就近可靠地接于信号地。3.1.2uc3875的特点UC3875为20脚双列直插DIP封装,储存温度范围为-65+150,工作温度范围为-25+80;工作结温150;引线温度300。其电路参数额定值为:电源电压20V;输出电流,直流015A,脉冲(015s)3A;模拟I/0(脚1,2,3,4,5,6,7,15,16,17,18,19)电平为-0.35

28、.3V。其特点如下:输出PWM脉冲0100%占空比,可编程控制输出导通延迟,电压或电流型拓扑相兼容,开关工作频率为1MHz,4个2A图腾柱输出,10MHz误差放大器,欠压锁定(UVLO),低的软上升电流(150A),具有软启动控制,有全周再启动过流比较门限及可调基准等。UC3875用一个半桥支路对另一个半桥支路的相移开关实行全桥功率级的控制,使得固定频率脉宽调制与零电压谐振开关相结合。振荡器工作频率约2MHz,实际应用的开关频率为1MHz;另外,控制器带时钟/同步端,可由外部信号对其同步。3.2UC3875的应用图3.2为UC3875的典型应用电路图3.2典型应用电路(1)死区时间的设置UC3

29、875的输出驱动信号和零电压开关的延迟时间由延迟设定(7脚和15脚)的R62、C46和R61、C45确定,这样,在不同的负载电流下,可产生一个工作周期内脉冲上升沿和下降沿不同的过渡转换时间。若产生过渡转换失真,将导致桥式变换器不能正常工作于ZVS工作状态。(2)移相PWM宽度的设置移相PWM的相移控制是通过误差放大器来实现的,误差放大器的同相端(4脚)通过分压电阻设置基准电压,反馈输出电压和电流信号A0经处理与反相端(3脚)相连,再比较,差值经放大输出,送至移相脉宽控制器,控制A,B与C,D之间的相位,最终调整波形占空比,使电压或电流稳定在预定值上。(3)限流保护措施正常情况下,开关电源应工作

30、在额定输出功率范围之内,避免电源工作在超出正常输出状态,但在实际工作中是很难预测的。可将高频变压器输出的电流经电流互感器耦合输出,再经整流、滤波及分压后,送至A1即UC3875的电流控制端(5脚),与比较器的同相端电压进行比较,当输入电压高于25V时,UC3875的过流保护电路起作用。(4)输出控制电路UC3875输出电路采用图腾柱式输出,最大电流可达2A,并可直接驱动功率晶体管和场效应管。为确保UC3875和开关器件工作在安全状态,在设计中增加了TC4427驱动电路、变压器驱动隔离电路等外围辅助电路。移相式零电压软开关变换器和控制芯片UC3875的合理使用,使得所设计关电源具有高频、高效、体

31、积小和轻量化的特点,这种软开关电路在通信电源和电力操作电源中得到广泛使用。第四章PWM控制技术PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻。现在大量应用的逆变电路中,绝大部分都是PWM型逆变电路。可以说PWM控制技术正是有赖于在逆变电路中的应用,才发展得比较成熟,才确定可它在电力电子技术中的重要地位。正因为如此,本章主要以逆变电路为控制对象来介绍PWM控制技术。实际上,离开了PWM控制技术对逆变电路的介绍就是不完整的。4.1PWM控制脉宽调制(PWM:PulseWidthModulation)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从

32、测量、通信到功率控制与变换的许多领域中。简而言之,PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。4.1.1PWM控制的基本原理随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机

33、PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例

34、如在0V,5V这一集合中取值。模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪

35、声很敏感,任何扰动或噪声都肯定会改变电流值的大小。通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。4.1.2PWM控制具体过程脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断

36、的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。许多微控制器内部都包含有PWM控制器。例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作:设置提供调制方波的片上定时器/计数器的周期;在PWM控制寄存器中设置接通时间;设置PWM输出的方向,这个输出是一个通用I/O管脚;启动定时器;使能PWM控制器。4.

37、1.3PWM控制的优点PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。PWM控制技术一直是变频技术的核心技术之一。1964年A.Schonung和H.stemmler首先提出把这项通讯技术应用到交流传动中,从此为交

38、流传动的推广应用开辟了新的局面。从最初采用模拟电路完成三角调制波和参考正弦波比较,产生正弦脉宽调制SPWM信号以控制功率器件的开关开始,到目前采用全数字化方案,完成优化的实时在线的PWM信号输出,可以说直到目前为止,PWM在各种应用场合仍在主导地位,并一直是人们研究的热点。由于PWM可以同时实现变频变压反抑制谐波的特点。由此在交流传动及至其它能量变换系统中得到广泛应用。PWM控制技术大致可以为为三类,正弦PWM(包括电压,电流或磁通的正弦为目标的各种PWM方案,多重PWM也应归于此类),优化PWM及随机PWM。正弦PWM已为人们所熟知,而旨在改善输出电压、电流波形,降低电源系统谐波的多重PWM

39、技术在大功率变频器中有其独特的优势(如ABBACS1000系列和美国ROBICON公司的完美无谐波系列等);而优化PWM所追求的则是实现电流谐波畸变率(THD)最小,电压利用率最高,效率最优,及转矩脉动最小以及其它特定优化目标。在70年代开始至80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般最高不超过5kHz,电机绕组的电磁噪音及谐波引起的振动引起人们的关注。为求得改善,随机PWM方法应运而生。其原理是随机改变开关频率使电机电磁噪音近似为限带白噪音(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。正因为如

40、此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值(DTC控制即为一例);别一方面则告诉人们消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,因为随机PWM技术提供了一个分析、解决问题的全新思路。4.1.4几种PWM控制方法(1)等脉宽PWM法VVVF(VariableVoltageVariableFrequency)装置在早期是采用PAM(PulseAmplitudeModulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压.等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种

41、.它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化.相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。(2)随机PWM在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注.为求得改善,随机PWM方法应运而生.其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽

42、管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱.正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析,解决这种问题的全新思路。(3)SPWM法SPWM(SinusoidalPWM)法是一种比较成熟的,目前使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即

43、SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.该方法的实现有以下几种方案。(4)等面积法该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点。(5)非线性

44、控制PWM单周控制法又称积分复位控制(IntegrationResetControl,简称IRC),是一种新型非线性控制技术,其基本思想是控制开关占空比,在每个周期使开关变量的平均值与控制参考电压相等或成一定比例.该技术同时具有调制和控制的双重性,通过复位开关,积分器,触发电路,比较器达到跟踪指令信号的目的.单周控制器由控制器,比较器,积分器及时钟组成,其中控制器可以是RS触发器。单周控制在控制电路中不需要误差综合,它能在一个周期内自动消除稳态,瞬态误差,使前一周期的误差不会带到下一周期.虽然硬件电路较复杂,但其克服了传统的PWM控制方法的不足,适用于各种脉宽调制软开关逆变器,具有反应快,开关

45、频率恒定,鲁棒性强等优点,此外,单周控制还能优化系统响应,减小畸变和抑制电源干扰,是一种很有前途的控制方法。(6)谐振软开关PWM传统的PWM逆变电路中,电力电子开关器件硬开关的工作方式,大的开关电压电流应力以及高的du/dt和di/dt限制了开关器件工作频率的提高,而高频化是电力电子主要发展趋势之一,它能使变换器体积减小,重量减轻,成本下降,性能提高,特别当开关频率在18kHz以上时,噪声将已超过人类听觉范围,使无噪声传动系统成为可能。谐振软开关PWM的基本思想是在常规PWM变换器拓扑的基础上,附加一个谐振网络,谐振网络一般由谐振电感,谐振电容和功率开关组成.开关转换时,谐振网络工作使电力电

46、子器件在开关点上实现软开关过程,谐振过程极短,基本不影响PWM技术的实现.从而既保持了PWM技术的特点,又实现了软开关技术.但由于谐振网络在电路中的存在必然会产生谐振损耗,并使电路受固有问题的影响,从而限制了该方法的应用。4.2PWM逆变电路及其控制方法目前中小功率的逆变电路几乎都采用PWM技术。逆变电路是PWM控制技术最为重要的应用场合。PWM逆变电路也可分为电压型和电流型两种,目前实用的几乎都是电压型。4.2.1计算法和调制法1、计算法根据正弦波频率、幅值和半周期脉冲数,准确计算PWM波各脉冲宽度和间隔,据此控制逆变电路开关器件的通断,就可得到所需PWM波形。缺点:繁琐,当输出正弦波的频率

47、、幅值或相位变化时,结果都要变化。2、调制法输出波形作调制信号,进行调制得到期望的PWM波;通常采用等腰三角波或锯齿波作为载波;等腰三角波应用最多,其任一点水平宽度和高度成线性关系且左右对称;与任一平缓变化的调制信号波相交,在交点控制器件通断,就得宽度正比于信号波幅值的脉冲,符合PWM的要求。调制信号波为正弦波时,得到的就是SPWM波;调制信号不是正弦波,而是其他所需波形时,也能得到等效的PWM波。如图4.2.1(a)结合IGBT单相桥式电压型逆变电路对调制法进行说明:设负载为阻感负载,工作时V1和V2通断互补,V3和V4通断也互补。控制规律:uo正半周,V1通,V2断,V3和V4交替通断,负载电流比电压滞后,在电压正半周,电流有一段为正,一段为负,负载电流为正区间,V1和V4导通时,uo等于Ud,V4关断时,负载电流通过V1和VD3续流,uo=0,负载电流为负区间,io为负,实际上从VD1和VD4流过,仍有uo=Ud,V4断,V3通后,io从V3和VD1续流,uo=0,uo总可得到Ud和零两种电平。uo负半周,让V2保持通,V1保持断,V3和V4交替通断,uo可得-Ud和零两种电平。单极性PWM控制方式(单相桥逆变):在ur和uc的交点时刻控制IGBT

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁