《图P63是用CMOS反相器接成的压控施密特触发器电路教学文案.doc》由会员分享,可在线阅读,更多相关《图P63是用CMOS反相器接成的压控施密特触发器电路教学文案.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Good is good, but better carries it.精益求精,善益求善。图P63是用CMOS反相器接成的压控施密特触发器电路-题6.3图P6.3是用CMOS反相器接成的压控施密特触发器电路,试分析它的转换电平VT+、VT-以及回差电压VT与控制电压VCO的关系。解设反相器G1输入端电压为V/1,则根据叠加定理得到在vI升高过程中vO=0。当升至时,因而得到图P6.3在vI降低过程中。当时,于是可得(3)(与VCO无关)题6.4在图6.2.3的施密特触发器电路中,若G1和G2为74LS系列与非门和反相器,他们的阈值电压VTH=1.2V,R1=1K,R2=2K,二极管的导通压降
2、VD=0.7V,试计算电路的正向阈值电压VT+、负向阈值电压VT-和回差电压VT。解题6.5图P6.5是具有电平偏移二极管的施密特触发器电路,试分析它的工作原理,并画出电压传输特性。G1、G2、G3均为TTL电路。VOVIVTHVTH-VD0图P6.5图A6.5解设门电路的阈值电压为VTH,二极管的导通压降为VD。则输入电压时,门G2输出高电平,、。在升高的过程中,当时,门G3输出低电平,使变成高电平而变为低电平,即=0、=1。所以VT+=VTH。在降低过程中,当VTH-VD时,门G2的输出变为高电平,而此时门G3输出已经是高电平,所以门G1输出变为低电平,电路变为=1、=0的状态。因此电路的
3、VT-=VTH-VD。电压传输特性如图A6.5。t0tt0题6.6在图P6.6的整形电路中,试画出输出电压的波形。输入电压的波形如图中所示,假定它的低电平持续时间比R、C电路的时间常数大得多。0t0图P6.6图A6.6解见图A6.6。图中的为反相器输入端的电压波形。题6.7能否用图P6.6中的电路作单稳态触发器使用?试说明理由。解由于反相器输入端电压(图A6.6中的)随脉冲的幅度变化和下降沿的好坏而改变,所以严格地讲,这不是一个单稳态触发器电路。只有在输入脉冲的幅度和下降沿不变的情况下,才可以产生固定宽度的输出脉冲。题6.10在图P6.9的微分型单稳态触发器电路中,若G1和G2为74系列TTL
4、门电路,它们的VOH=3.2V,VOL=1.3V,R=0.3K,C=0.01F,试计算电路输出负脉冲的宽度。解由图A6.9可见,输出脉冲宽度等于从电容开始充电到降至VTH的一段时间。电容充电的回路如图A6.10所示。忽略门G2的输出电阻R0及门G1高电平输入电流,则充电回路可简化为R和C串联的简单回路。从VOH(电容开始充电瞬时的值)下降至VTH的时间(也就是输出脉冲的宽度)为图A6.10题6.13在图6.4.1所示的对称式多谐振荡器电路中,若RF1=RF2=1K,C1=C2=0.1F,G1和G2为74LS04(六反相器)中的两个反相器,G1和G2的VOH=3.4V,VTH=1.1V,VIK=
5、-1.5V,R1=20K,求电路的振荡频率。解根据式(6.4.5)可知,振荡周期为其中故得到振荡频率为题6.14图P6.14是用CMOS反相器组成的对式多谐振荡器。若RF1=RF2=10K,C1=C2=0.01F,RP1=RP2=33K,试求电路的振荡频率,并画出、图P6.14、各点的电压波形。解在RP1、RP2足够大的条件下,反相器的输入端电流可以忽略不计。在电路参数对称的情况下,电容的充电时间和放电时间相等,据此画出的各点电压波形如图A6.14(a)所示。图A6.14(b)是电容充、放电的等效电路。由等效电路求得振荡周期为故得振荡频率为t0t00tC2放电的等效电路C1充电的等效电路0tm
6、s题6.15在图6.4.6非对称式多谐振荡器电路中,若G1、G2为CMOS反相器,RF=9.1K,C=0.001F,RP=100K,VDD=5V,VTH=2.5V,试计算电路的振荡频率。解振荡频率为题6.16如果将图6.4.6非对称式多谐振荡器中的G1和G2改用TTL反相器,并将RP短路,试画出电容C充、放电时的等效电路,并求出计算电路振荡频率的公式。解根据电路工作原理得到的波形如图A6.16(a)所示。电容C放电(指下降的过程)的回路如图A6.16(b),电容充电(指上升的过程)的回路如图A6.16(c)。由此求得电容放电时间T1和充电时间T2分别为其中在R1R的条件下,RER,VEVOH,
7、这时可得到周期的近似计算公式0tVTH+VOH-VIKT1T2VTH(a)(b)CVCCVOHR1(C)图A6.16题6.17图P6.17是用反相器接成的环行振荡器电路。某同学在用示波器观察输出电压的波形时发现,取n=3和n=5所测得的脉冲频率几乎相等,试分析其原因。解当示波器的输入电容和接线电容所造成的延迟时间远大于每个门电路本身的传输延迟时间时,就会导致这种结果。题6.18在图6.4.12(b)的环行振荡器电路中,试说明:(1)R、C、RS各起什么作用?(2)为降低电路的振荡频率可以调节哪些电路参数?是加大还是减小?(3)R的最大值有无限制?解(1)R和C用于增加门G2到G3间的传输延迟时
8、间,RS是门G3的输入端限流保护电阻。(2)加大R或加大C。(3)根据反相器的输入端负载特性可知,R不能过大。否则由于R和RS上的压降过大,当为低电平时将被抬高到逻辑1电平。题6.19在图6.4.12(b)所示的环行振荡器电路中,若给定R=200,RS=100,C=0.01F,G1、G2和G3为74系列TTL门电路(VOH=3V,VOL0,VTH=1.3V),试计算电路的振荡频率。解根据式(6.4.18)得到振荡频率为Rext8+12V题6.21图P6.21是用LM566接成的压控振荡器(原理图见图6.4.21)。给定REXT=10K,CEXT=0.01F,VCC=12V,试求输入控制电压在9
9、12V范围内变化时,输出脉冲频率变化范围有多大?4VCCRext10k解由式(6.4.22)知,振荡频率为3756VO2VO1LM566CextVI0.01F1CextGND当=9V时,代入上式得到f=5kHz。当=12V时,f=0。题6.22上题中若输出矩形脉冲的高、低电平分别为图P6.2111V和5V,试问用什么办法能把它的高、低电平变换为5V和0.1V?解可采用图A6.22所示的方法。在图(a)电路中,电路参数的配合应保证=5V时三极管T截止,=11V时T饱和导通。+5V+5V在图(b)电路中,稳压管的工作电压取略大于5V,并应保证=11V时R2上的电压高于OC门的阈值电压。RLDZRC
10、1RITR2R2R1-VEEVCC=10V(a) (b)图A6.2218RU22K题6.23图P6.23是用LM331接成的温0.1F63度/频率变换器。其中RL是热敏电阻,它的CL7LM331RT6.8k阻值和温度的关系为RL=R0(1-T)。R0为t25RLt=25时的阻值,为温度系数,T为4RSCT0.01F偏离基准温度(25)的温度增量。若给8.2k定R0=100K,=0.05,其他元件参数如图中所标注,试求:(1)t=25时的初始振荡频率。图P6.23(2)温度每变化1振荡改变多少?解(1)根据式(6.4.27)可求出t=25时的振荡频率。因为=VREF,固得由式(6.4.27)得出
11、在温度为25附近(T很小)时,上式可近似为:即在25附近每升高1频率增加55Hz。题6.26在使用图6.5.4由555定时器组成的单稳态触发器电路时对触发脉冲的宽度有无限制?当输入脉冲的低电平持续时间过长时,电路应作何修改?解触发脉冲的宽度必须小于1.1RC(即正常触发时产生的输出脉冲宽度)。在触发脉冲低电平持续时间大于1.1RC的情况下,应将触发脉冲经过微分电路以后再加到输入端。题6.27试用555定时器设计一个单稳态触发器,要求输出脉冲宽度在110s的范围内可动手调节。给定555定时器的电源为15V。触发信号来自TTL电路,高低电平分别为3.4V和0.1V。解(1)若使图A6.27的单稳态
12、电路正常工作,触发信号必须能将触发输入端电压(2端)拉到VT-以下,而在触发信号到来之前,2端电压高于VT-。由于VT-=5V,而触发脉冲最高电平仅为3.4V,所以需要在输入端加分压电阻,使2端电压在没有触发脉冲时略高于5V。可取R1=22K、R2=18K,分压后VCC48RR12端电压为6.75V。触发脉冲经微36Cd分电容Cd加到2端。52555取C=100F,为使TW=110秒,可7R20.01F求出1CR的阻值变化范围图A6.27取100K的电位器与8.2K电阻串联作为R,即可得到TW=110s的调节范围。VCC题6.29图P6.29是用555定时器构成的压控振荡器,试求输入控制电压和
13、振荡频率之间的关系式。当升高时频率是升高还是降低?R1解由式(6.5.2)及式(6.5.3)知,振荡周期为R248375551625将VT+=,VT-=代入上式后得到C当升高时,T变大,振荡频率下降。图P6.29题6.30图P6.30是一个简易电子琴电路,当琴键S1Sn均未按下时,三极管T接近饱和导通,约为0V,使555定时器组成的振荡器停振。当按下不同琴键时,因R1Rn的阻值不等,扬声器发出不同的声音。若RB=20K,R1=10K,RE=2K,三极管的电流放大系数=150,VCC=12V,振荡器外接电阻、电容参数如图所示,试计算按下S1时扬声器发出声音的频率。解当按下S1时,如果忽略三极管T
14、的基极电流,则流过R1的电流与流过RB的电流相同,所以R1上的电压为设T为PNP型锗三极管,导通时VBE=0.3V,则RE上的电压为因此得到由于接到了555定时器的VCO端,则根据上题的结果可得VCC=12VRnRER2R1100F10k4+387SnS2S110k65555T120.1FRB图P6.30VCC=12V题6.32图P6.32是救护车扬声器发音电路。在图中给出的电路参数下,试计算扬声器发出声音的高、低音频率以及高、低音的持续时间。当VCC=12V时,555定时器输出的高、低电平分别为11V和0.2V,输出电阻小于100。R4C310kR184810k373+30FR5R27150
15、k100kR35555556810k26C225001FC111C110F100图P6.32解图P6.32中两个555定时器均接成了多谐振荡器。(1)的高电平持续时间为这时=11V。由图A6.32可以叠加定理计算出,加到右边555定时器5脚上的电压VCO=8.8V。因此,VT+=8.8V、VT-=4.4V。振荡器的振荡频率,亦即扬声器声音的周期为VCC=12VVCO5k310k5k5555555k(2)的低电平持续时间为这时=0.2V,由图A6.32可以计算出,加到右边一个555定时器5脚上的电压VCO=6V,故VT+=6V、VT-=3V。振荡周期为至此可知,高音频率为876Hz,持续时间1.04s。低音频率为611Hz,持续时间1.1s。-