化学工程与工艺专业介绍及发展前景说课讲解.doc

上传人:1595****071 文档编号:52298063 上传时间:2022-10-22 格式:DOC 页数:36 大小:153KB
返回 下载 相关 举报
化学工程与工艺专业介绍及发展前景说课讲解.doc_第1页
第1页 / 共36页
化学工程与工艺专业介绍及发展前景说课讲解.doc_第2页
第2页 / 共36页
点击查看更多>>
资源描述

《化学工程与工艺专业介绍及发展前景说课讲解.doc》由会员分享,可在线阅读,更多相关《化学工程与工艺专业介绍及发展前景说课讲解.doc(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Good is good, but better carries it.精益求精,善益求善。化学工程与工艺专业介绍及发展前景-一首先,通过数字直观展现化学工程与工艺专业在化工行业的良好地位及就业前景,之后具体介绍化学工程与工艺专业学生经过学习所获得的知识及能力,同时,分而详述化学工程、化学工艺。在介绍化学工程时,着重介绍化学工程的概念、其重要任务及其发展的基础,之后介绍化学工程的发展方向学科深度及广度的发展。而介绍化学工艺时,介绍了其概念,也同时介绍了化工生产的过程,从而展现工程与工艺在化工生产中的重要地位。其后,介绍了化学工艺所涉及的方面,最后介绍化学工艺的主要发展趋势。而分开介绍工程与工艺

2、的同时,也穿插入两者的联系,系统展现化学工程与工艺的本质与发展。介绍完化学工程与工艺专业,作为学习这门专业的我们,不禁会对自己的未来产生思考,之后的篇幅便是介绍本专业的未来发展路线:技术型路线、销售型路线及复合型路线。通过对三者的一一描述,产生纵向的说明展望及横向的对比思考。全篇从对化工专业的了解开始,止于对个人发展的归纳展望,展现化学工程与工艺专业的巨大潜能及良好的未来发展态势。对化学工程与工艺专业的深入了解及对个人未来发展的展望化工科学体系庞大,其包括材料化学、材料物理、化学工程与工艺、环境工程、精细化工、生物工程等近二十个专业。而有调查显示,目前企业需求最大的三个抓也中,化学工程与工艺以

3、19%的比例占据第一,其次是均为14%的高分子材料与工程和精细化工专业。由此可见,化学工程与工艺专业人才的市场需求大,就业前景好,对社会的贡献也大。选择化学工程与工艺专业的我们,也必将在祖国的建设中大展拳脚。学习化学工程与工艺专业的知识,我们可获得多方面的知识及能力。首先,我们可以掌握化学工程、化学工艺及应用化学等学科的基础理论知识,掌握化工装置工艺与设备设计方法,掌握化工过程模拟优化的方法;其次,我们还可以熟悉国家对于化工生产、设计、研究与开发、环境保护等方面的方针,政策和法规,了解化学工程学的理论前沿,了解新工艺、新技术、新技术与新设备的发展动态;最重要的是,我们学会了文献检索、资料查询的

4、基本方法,具有一定得科学研究和实际工作能力,具有创新的意识及独立获取新知识的能力。化学工程与工艺专业,他的发展方向有化学工程与化学工艺。化学工程是研究化学工业和其他过程工业生产中所进行的化学过程和物理过程共同规律的一门工程学科。其一重要的任务就是研究有关工程因素对过程和装置的效应,特别是在放大的效应。以解决关于过程开发、装置设计和操作理论和方法等问题。它以物理学、化学和教学的原理为基础,广泛应用各种实验手段,与化学工艺相配合,去解决工业生产问题。化学工程包括单元操作、化学反应工程、化工热力学、化学系统工程、过程动态学及控制等方面,其研究对象通常是非常复杂的,主要表现在过程本身的复杂,物理的复杂

5、及物系流动时边界的复杂性。而化学工程的研究范围也包括装置的大型化和新产品、新工艺工业化的问题,且化学工程在国民经济中的重要作用也是非常明显的。同时,化学工程也向着两个方向发展:一方面随着学科的成熟,不断向学科深度发展,另一方面是不断向新的领域渗透,研究和解决新领域的新问题。化学工艺即化工技术或化学生产技术,指将原料物主要经过化学反应转变为产品的方法和过程,包括实现这一转变的全部措施。化学生产过程一般地可概括为三个主要步骤:1原料处理;2化学反应;3产品精制。而以上的三步骤都需要在特定的设备中,在一定的操作条件下完成所要求的化学和物理得转变。而化学生产技术一般是对一定的产品或原料提出的,所以,它

6、具有个别生产的特殊性,但其内容所涉及的方面一般有:原料和生产方法的则用,流程组织;所用设备的作用,结构和操作;催化剂及其它物料的影响,操作条件的确定,生产控制,产品规格及副产品的分离和利用,以及安全技术和技术经济等问题。现代化学生产的实现,应用了基础科学理论(化学、物理和数学等),化学工程原理和方法以及其他有关的工程学科的知识及技术。而现代化学生产技术的主要发展趋势是:基础化学生产的大型化,原料和副产品的充分利用,新原料路线和新催化剂的采用,能源消耗的降低;环境污染的防止,生产控制自动化,生产的最优化等。在了解了化学工程与工艺专业可以让我们学到些和得到些什么之后,我们又有哪些成长路线呢?1技术

7、型路线:技术员-工程师-总工程师(或创业)化工行业是个讲究资历和积累的行业,很少有“一飞冲天”的特别机遇,初毕业的我们可以做些技术类的工作,踏踏实实,一步步积累技术资本和经验,然后到了一定程度后,便能获得比较好的机遇和地位。化学工程与工艺工作,一般需要一个相当长的时间来让自己的理论和实践得以充分的结合后,才能谋取个人职业的发展基础。所以,若要走技术路线,对于刚毕业的我们,必须在寂寞与微薄的薪水中提升自己,技术和经验是化学工程师的资本,基本可以替代金融资本进行创业,这也是工作最开始几年的寂寞和低收入换来的回报。有技术在手,想有高薪或者是创业,都不是问题。2销售型路线:业务员-销售主管-区域经理-

8、销售总监化工原材料的辨别必须是建立在扎实的专业基础之上,否则无法向客户解释产品的优劣。所以,化工贸易人才基本都需要是化工专业出身,同时熟知外贸规则和单位业务,还必须具备贸易人才的耐心细致,语言表达能力强,开朗乐观,能吃苦耐劳等素质,若你具备以上的素质,那便在你涉足该行业做销售时,努力地工作。工作的前两年是收入和职业发展的关键期,因为,销售过程中最重要的渠道(人脉)和技巧在两年内基本定型。好的销售人才永远都不用发愁企业或行业的不景气,因为销售技能的通用性,跳槽转行都是非常轻松的。3复合型人才路线:化工类专业毕业生若要成为企业青睐的复合型人才,关键的在于如何取得化工类技术以外的教育背景和从业经历。

9、除了传统的化工生产、工艺、研发、质量检验等化工专业型人才外,物流、法律、环保、项目管理等“边缘性”人才的招聘比例大大提高,有时甚至超过了化工专业人才的招聘量。这些人才要求掌握多方面的专业知识。通过跨专业开研究生,是取得相关专业教育背景和专业知识的主要途径。另外,双学位的获取,也是个选项。而达到大三的我们,可以通过辅修来学习其他专业的知识。同时,我们在校期间,通过参加权威的认证考试,也可取得毕业时进入相关行业的“通行证”。最后,有目的的选择实习单位也是极其重要的。如此,化学工程与工艺专业的前景是广阔的,为了美好的明天,今天的我们偏硬开足马力,加紧学习。二本专业培养具有化学工程与化学工艺方面的知识

10、,能在化工、能源、信息、材料、环保、生物工程、轻工、制药、食品、冶金和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面工作的工程技术人才。本专业学生主要学习化学工程与化学工艺学等方面的基本理论和基本知识,受到化学与化工实验技能、工程实践、计算机应用、科学研究与工程设计方法的基本训练,具有对现有企业的生产过程进行模拟优化、革新改造,对新过程进行开发设计和对新产品进行研制的基本能力。主要课程有:物理化学、化工流体流动与传热、化工传质与分离过程、化工热力学、化学反应工程、化工设计、化工过程分析与合成和一门必选的专业方向课程。本专业每年计划招生本科240名、硕士约300名,博士约60名。

11、一、化学工程方向本方向隶属于化学工程国家重点学科,是首批被国务院学位委员会批准为具有硕士和博士学位授予权的学科点,并设有博士后流动站。本专业方向旨在培养德智体全面发展的,具有良好心理素质和较高知识素养的高等化工专业人才。毕业生所具备的理论基础和实践能力,使之拥有更广泛的适应性。在掌握了现代化工生产技术领域的生产过程、设备设计和产品研制开发的基础理论、基本技能以及现代化研究方法和手段后,能胜任化工制药类过程的研究、开发、设计和管理工作。毕业后,既可到化工、能源、信息、材料、环保、轻工、制药、食品、冶金和军工等企业进行项目开发、工程设计和技术管理,也可以在科研院所或大专院校继续深造并从事科学研究和

12、教学工作。化学工程是以化学工业及相关生产过程中所进行的化学、物理过程为研究对象,探究其所用设备的设计原理与操作方法以及最终实现过程优化所应遵循的共性规律。本专业方向学生主要学习化工流体流动与传热、化工传质与分离过程、化工热力学、化学反应工程、化工传递过程基础、化工数学、化工分离过程、化工工艺学、化工过程分析与合成、化工设计等课程,为拓宽专业面,增加适应性,还开设生化基础、石油炼制工程、环境化工、化工机械基础、ChemCAD等课程。本专业方向师资力量雄厚,目前共有教学、科研人员近100人,其中有中国科学院余国琮院士,中国工程院王静康院士,18位博士生导师、21位教授、40余位副教授。本专业方向设

13、有多个研究基地,如国家重点化学工程联合实验室即精馏分离实验室、国家精馏技术工程研究中心,国家工业结晶技术推广中心、国家医监局天津大学医药结晶工程中心、绿色化工精制加工技术教育部工程研究中心及天津大学生物医学工程研究所等。自1988年以来,本专业方向已有80余项成果通过鉴定,其中达到国际先进水平的50余项,国内首创的20余项,获国家级奖12项,省市部委级奖20余项。推广和应用科研成果年效益超过亿元。在国内外重要学术刊物、学术会议上发表论文700余篇,出版专著和在国内外有较大影响、被广泛采用的高教统编教材38种。二、化学工艺方向本专业方向由我国著名的化工专家张建侯教授等知名学者于1958年创建。本

14、专业方向1981年被批准为首批博士学位授予点,1986年被确定为国家重点学科,是国家“211工程”重点建设学科之一。本专业方向是教育部批准的首批设立长江学者特聘教授岗位的学科。学术队伍实力雄厚,梯队合理,在编人员共计45人,有教授18人,长江学者1名,国家杰出青年基金获得者1人,跨世纪人才1人,新世纪人才4人,副教授22人(其中博士生导师10名,硕士生导师35名)。本学科设有硕士点2个,博士点1个,博士后流动站1个;年招收硕士生约100名,博士生约30名。化学工艺是以产品为目标的产品工程学,它利用已有化学、化学工程等科学成就为化学工业提供技术上最先进,经济上最合理的方法、原理、设备与流程。因此

15、它是“化学工程与技术”一级学科中直接面向国民经济、国防建设和人民生活的举足轻重的二级学科。化学工艺包括能源化工、材料化工、有机化工、环境化工、高分子化工、无机化工等众多领域,覆盖面广,它不仅涵盖了传统的基础领域,同时与材料、能源、生物、医药、环境等学科渗透融合,不断地培植出新的生长点。它既是一个历史悠久、曾做出重大贡献的学科,又是一个新世纪不可缺少的充满了生机与活力的学科。本专业方向的主要研究方向为:1)一碳化工与能源化工;2)功能化学品及新材料的绿色合成;3)生物质能源与生物质的化学加工。这些研究方向的特点是:1)遵循实现可持续发展的基本国策,推动传统的化学工艺学科成为绿色的工艺过程,最大限

16、度地节约能源、资源,积极研究开发替代能源,走与环境协调友好的发展道路;2)面向21世纪迅猛发展的高新技术为航空航天技术、信息技术、新材料、新能源提供丰富的功能与专用化学品,为高技术服务。3)根据学科门类齐全,基础雄厚的特点,积极促进学科间的交叉和融合,积极开展与材料、能源、环境等学科的交叉领域研究,培植本学科新的增长点,以丰富和发展化学工艺学科。本专业方向近五十年来培养了大量优秀人才,包括工程院院士、设计大师、部委技术领导等;其研究生培养始于五十年代末,培养的博士生数量和质量位于国内同类博士点前茅。本专业方向拥有一流的基础设施,另配有专门从事化学工艺研究开发的石油化工技术开发中心。本学科立足于

17、国际学术前沿,以增强国家综合实力和创新能力作为教学和科研的主导思想,研究方向辐射面广、集成性强。在新型合成工艺、一碳化工、新型高效分离技术、反应与分离集成技术等领域处于国内领先,并部分达到国际先进水平。近五年内,完成和承担国家“十五”、“十一五”攻关项目、“863”、“973”项目、国家自然科学基金重大项目、国际合作项目等多项重大科研项目,科研总经费达6000多万元。获得国家和省部级奖励20项,在取得巨大经济效益的同时,也推动了国内化学工艺学科的发展。三、催化科学与工程方向本学科是国家重点学科,是催化化学、材料物理及化学工程之间的交叉学科,具有理工结合的特点。本专业方向是全国第一个工业催化专业

18、。1971年开始招生,1978年批准为硕士点,1990年批准为博士点。催化科学与工程是当今国际上最活跃的科技领域之一。据统计与催化有关的产值约占国民生产总值的25;催化剂是目前更新换代最快、经济产出比最大的技术产品之一。近年来,材料物理、表面科学、计算机模拟技术、绿色化学、生物化学和纳米技术的进步给催化科学与工程的发展带来新的活力,使之成为解决资源、环境、生命和材料等领域中科技问题的支柱科学技术。本专业方向培养德、智、体全面发展的具有开拓能力的高级工程技术人才、业务培养目标为:培养具有催化科学技术基础和掌握化学反应工程理论,具备扎实的材料科学理论和技术知识,熟悉现代化学物理研究方法和技能,了解

19、现代科技现状与发展前景,能胜任化工、能源、材料、医药、食品、环保等领域中相关的新工艺、新材料、新产品的研究、开发、设计和工业化的复合高等工程技术人才。本专业方向毕业生完全适应在化工(包括有机化工、无机化工、精细化工)、能源化工、生物化工、环境保护、材料、医药、食品等研究和生产部门工作。本专业方向的主要课程包括:新材料科学(结构化学、结晶化学、近现代材料科学的进展等)、化学工艺学、化工数学、表面化学、催化作用原理、催化剂制备工程、催化反应工程、催化研究方法、工业催化剂设计原理、催化进展等。本学科现有教授7人,副教授8人,博士生导师6人,硕士生导师12人。本专业方向获得国家发明奖2项,获得教育部、

20、省市级科技进步奖4项,鉴定成果和发明专利20余项,在国内外学术刊物上发表论文600余篇。本专业方向科学研究经费充足,拥有国内一流水平的催化科学与工程研究实验室及仪器设备和装置。四、高分子科学与工程方向本专业方向是化学工程与高分子材料科学相结合的一门综合学科,主要研究高分子材料的合成、改性、过程与结构控制以及高分子材料的应用。随着高分子材料向着大型化、精细化、功能化和智能化方向的飞速发展,高分子新材料层出不穷,高分子科学与工程在当今材料科学、生物技术、环保和电子信息技术领域起着极其重要的作用,有着广阔的应用前景。高分子科学与工程专业方向培养德、智、体全面发展,具有高分子材料和化学工程专业知识的高

21、级工程技术人才,培养学生掌握高分子材料的合成方法、工艺和工程的基本理论以及高分子材料结构与性能之间的关系,为高分子材料的合成、加工及应用打下坚实的基础,学生毕业后可从事高分子材料的研究、开发、设计、材料加工和应用等方向的工作。本专业方向在化学工程与工艺的基础理论之上,开设的主要课程包括:高分子化学、高分子物理、聚合过程与设备、高分子合成工艺学、化工工艺设计、生物医学材料、特种聚合物、功能高分子等。本专业方向的前身-高分子化工教研室成立于1958年,是我国工科院校最早成立的高分子专业之一。本专业方向主要研究领域有:生物医学材料、可降解环境友好材料、功能高分子材料、水溶性聚合物、智能高分子材料等多

22、种聚合物材料,以及非均相聚合技术、精细高分子合成等。在“八五”及“九五”期间承担多项国家自然科学基金、“八五”、“九五”攻关项目,有40余项科研成果通过省部级鉴定,其中获得国家发明三等奖1项,国家科学进步三等奖2项,教育部科技进步二等奖、三等奖各1项,获省部级科技优秀成果奖、进步奖10余项,在科技成果转化为生产力方面做出了贡献,为社会创造近亿元经济效益。五、精细化工方向本专业方向建于1952年,原名中间体及染料专业,是我国第一批设置的进行精细化工教学和科研的专业,自1957年开始招收硕士研究生;1985年为了适应经济发展的需要,拓宽为精细化工专业,1999年调整为化学工程与工艺专业精细化工方向

23、,毕业生适应性强,择业面广。本专业有较雄厚的师资力量,具有一支朝气蓬勃的教学和科研队伍。本专业方向的主要课程包括:精细有机合成化学及工艺学、精细化学品分析、表面活性剂化学、助剂化学、有机功能材料、精细化学品合成与应用(双语)、现代仪器分析、精细化工反应器、化工工艺设计等。本专业方向主要研究领域涉及国家经济的多个领域,研究范围广,技术含量高,成品附加值大,包括:有机和医药中间体,功能性材料,有机染(颜)料,表面活性剂及助剂,合成材料和石油产品添加剂等,近年来共承担国家攻关项目,国家自然科学基金项目、国家863计划项目和天津市科委项目20余项,曾获教育部、天津市及省市科技进步奖若干项,在国内外重要

24、期刊发表论文数百篇,受到广泛好评。同时,与国内外企业、研究单位有着密切的合作关系。目前多项研究成果已转化为生产力,随着精细化学品在国民经济中所占比例的增加,本专业方向将会有更快的发展。六、应用化学方向本学科是一门综合性和交叉性极强的学科,与能源科学、材料科学、生命科学、信息科学、电子科学及光电子科学等众多学科有着密切联系,应用领域极广。本专业为国内最先设置,并于1956年和1961年开始招收本科生和研究生,1986年经国务院学位委员会批准成为我国电化学领域首批具有博士学位授予权的单位,并设有博士后流动站。本专业在国内外同行中极具影响,学术上一直处于领先水平。本专业方向旨在培养德、智、体全面发展

25、的,适应21世纪知识经济时代需要的全方位型高级技术和管理人才。由于学科本身所具有的学科交叉性和综合性这一特点,决定了本专业方向培养出的学生既有扎实的基础理论知识又有宽广的专业知识,因而毕业后择业范围宽,在众多科研院所和公司企业中有着广阔的施展才能的空间,多年来毕业生一直供不应求。本专业方向师资力量雄厚。“七五”以来,承担国家863、973高科技项目、国家自然科学基金项目、省部委级的科研项目数十项,科研硕果累累,获得国家发明奖及科技进步奖多项,并在科研成果转化为生产力方面取得了突出成绩。本专业方向的主要课程包括:理论电化学、应用电化学、电化学测量技术、新型化学电源、电子器件及应用、电化学工程技术

26、、纳米及非晶材料电化学、材料保护、有机电合成、生物电化学等。本专业方向主要研究领域包括:高能化学电源(燃料电池、铝电池、镍氢电池等)及电化学工程、功能材料及其制备技术、电催化及电合成、纳米材料及制备技术、生物电化学、导电聚合物及其制备技术等。三化学工程与工艺专业简介化学工艺即化工技术或化学生产技术,指将原料物主要经过化学反应转变为产品的方法和过程,包括实现这一转变的全部措施。化学生产过程一般地可概括为三个主要步骤:原料处理。化学反应。产品精制。以上每一步都需在特定的设备中,在一定的操作条件下完成所要求的化学的和物理的转变。化学生产技术通常是对一定的产品或原料提出的,例如氯乙烯的生产、甲醇的合成

27、、硫酸的生产、煤气化等。因此,它具有个别生产的特殊性;但其内容所涉及的方面一般有:原料和生产方法的选择,流程组织,所用设备(反应器、分离器、热交换器等)的作用,结构和操作,催化剂及其他物料的影响,操作条件的确定,生产控制,产品规格及副产品的分离和利用,以及安全技术和技术经济等问题。现代化学生产的实现,应用了基础科学理论(化学和物理学等)、化学工程和原理和方法、以及其他有关的工程学科的知识和技术。现代化学生产技术的主要发展趋势是:基础化学工业生产的大型化,原料和副产物的充分利用,新原料路线和新催化剂(包括新反应)的采用,能源消耗的降低,环境污染的防止,生产控制自动化,生产的最优化等。在生产和科学

28、的长期发展中,化学生产逐渐从手工艺式的生产向以科学理论为基础的现代生产技术转变。但由于化学生产中的物质转化的内容复杂,类型繁多,经验性的生产技术仍然存在。化学工艺这一名称,从上述发展来看,只宜用于仍主要根据经验进行的化学生产。在高等学校的课程设置中,有工业化学和化学工艺学,两种课程仅在名称上不同,其内容均与上述化学生产技术的一般内容大体相似。研究化学工业和其他过程工业(processindustry)生产中所进行的化学过程和物理过程共同规律的一门工程学科。这些工业包括石油炼制工业、冶金工业、建筑材料工业、食品工业、造纸工业等。它们从石油、煤、天然气、盐、石灰石、其他矿石和粮食、木材、水、空气等

29、基本的原料出发,借助化学过程或物理过程,改变物质的组成、性质和状态,使之成为多种价值较高的产品,如化肥、汽油、润滑油、合成纤维、合成橡胶、塑料、烧碱、纯碱、水泥、玻璃、钢、铁、铝、纸浆等等。化学过程是指物质发生化学变化的反应过程,如柴油的催化裂化制备高辛烷值汽油是一个化学反应过程。物理过程系指物质不经化学反应而发生的组成、性质、状态、能量变化过程,如原油经过蒸馏的分离而得到汽油、柴油、煤油等产品。至于其他一些领域,诸如矿石冶炼,燃料燃烧,生物发酵,皮革制造,海水淡化等等,虽然过程的表现形式多种多样,但均可以分解为上述化学过程和物理过程。实际上,化学过程往往和物理过程同时发生。例如催化裂化是一个

30、典型的化学过程,但辅有加热、冷却和分离,并且在反应进行过程中,也必伴随有流动、传热和传质。所有这些过程,都可通过化学工程的研究,认识和阐释其规律性,并使之应用于生产过程和装置的开发、设计、操作,以达到优化和提高效率的目的。上述工业生产的共同特点是,从实验室到工业生产特别是大规模的生产,都要解决一个装置的放大问题。生产规模扩大和经济效益提高的重要途径是装置的放大,以节省投资,降低消耗,减少占地,节约人力。但是,在大装置上所能达到的某些指标,通常低于小型试验结果,原因是随着装置的放大,物料的流动、传热、传质等物理过程的因素和条件发生了变化。这种起源于放大过程的效应,长期以来被笼统地称作“放大效应”

31、,它包含了很多已查明或未查明的物理因素(或称工程因素)的影响。化学工程的一个重要任务就是研究有关工程因素对过程和装置的效应,特别是在放大中的效应,以解决关于过程开发、装置设计和操作的理论和方法等问题。它以物理学、化学和数学的原理为基础,广泛应用各种实验手段,与化学工艺相配合,去解决工业生产问题。化学工程包括单元操作、化学反应工程、传递过程、化工热力学、化工系统工程、过程动态学及控制等方面。单元操作构成多种化工产品生产的物理过程都可归纳为有限的几种基本过程,如流体输送、换热(加热和冷却)、蒸馏、吸收、蒸发、萃取、结晶、干燥等。这些基本过程称为单元操作。对单元操作的研究,得到具有共性的结果,可以用

32、来指导各类产品的生产和化工设备的设计。在20世纪初,对化学工程的认识虽只限于单元操作,但却开拓了一个崭新的领域和出现了一些从事崭新职业的化学工程师。这些化学工程师不同于以往的化工生产工作者,他们经历过化学工程这一专门学科的训练,故有能力使化工生产过程和设备设计、制造和操作控制更为合理。直到今天,各个单元操作的研究还是有着极为重要的理论意义和应用价值,而且是为了适应新的技术要求,一些新的单元操作不断出现并逐步充实进来。化学学习考研复试调剂,提供免费真题笔记课件教材等,为化学工作者提供学习和科研、工作等的网络交流平台化学反应工程化学反应是化工生产的核心部分,它决定着产品的收率,对生产成本有着重要影

33、响。尽管如此,在早期因其复杂性而阻碍了对它的系统研究。直到20世纪中叶,在单元操作和传递过程研究成果的基础上,在各种反应过程中,如氧化、还原、硝化、磺化等发现了若干具有共性的问题,如反应器内的返混、反应相内传质和传热、反应相外传质和传热、反应器的稳定性等。对于这些问题的研究,以及它们对反应动力学的各种效应的研究,构成了一个新的学科分支即化学反应工程,从而使化学工程的内容和方法得到了充实和发展。传递过程是单元操作和反应工程的共同基础。在各种单元操作设备和反应装置中进行的物理过程不外乎三种传递:动量传递、热量传递和质量传递。例如,以动量传递为基础的流体输送、反应器中的气流分布;以热量传递为基础的换

34、热操作,聚合釜中聚合热的移出;以质量传递为基础的吸收操作,反应物和产物在催化剂内部的扩散等。有些过程有两种或两种以上的传递现象同时存在,如气体增减湿等。作为化学工程的学科分支,传递过程着重研究上述三种传递的速率及相互关系,连贯起一些本质类同但表现形式各异的现象。化工热力学也是单元操作和反应工程的理论基础,研究传递过程的方向和极限,提供过程分析和设计所需的有关基础数据。因此,化学工程的学科分支也可以分两个层次:单元操作和反应工程较多地直接面向工业实际,传递过程和化工热力学较多地从基础研究角度,支持前两个分支。通过这两个层次使理论和实际得以密切结合。随着生产规模的扩大和资源、能源的大量耗用,使得早

35、先并不显得很重要的问题逐渐突出起来。例如能量利用问题,设计和操作优化问题,在大型生产中都十分重要。由于化工过程中,各个过程单元相互影响,相互制约,因此很有必要将化工过程看作一个综合系统,并建立起整体优化的概念。于是系统工程这一学科在化学工程中得到了迅速的发展,也取得了明显的效果,形成了化工系统工程。它是系统工程方法与单元操作和化学反应工程这两个学科分支相结合的产物。为了保持操作的合理和优化,过程动态特性和控制方法也是化学工程的重要内容。化学工程的研究对象通常是非常复杂的,主要表现在:过程本身的复杂性:既有化学的,又有物理的,并且两者时常同时发生,相互影响。物系的复杂性:既有流体(气体和液体),

36、又有固体,时常多相共存。流体性质可有大幅度变化,如低粘度和高粘度、牛顿型和非牛顿型等。有时,在过程进行中有物性显著改变,如聚合过程中反应物系从低粘度向高粘度的转变。物系流动时边界的复杂性:由于设备(如塔板、搅拌桨、档板等)的几何形状是多变的,填充物(如催化剂、填料等)的外形也是多变的,使流动边界复杂且难以确定和描述。化学工程的研究方法由于化学工程对象的这些特点,使得解析方法在化学工程研究中往往失效。也从而形成了自己的研究方法(化学工程研究方法),其中有些方法并非首创,而由别的领域移植而来。早期的研究方法化学工程初期的主要方法是经验放大,通过多层次的、逐级扩大的试验,探索放大的规律。这种经验方法

37、耗资大、费时长、效果差,人们一直努力试图摆脱这种处境。但是时至今日,对于一些特别复杂,人们迄今尚知之甚少的过程,还不得不求助于或部分求助于此法。20世纪初的研究方法相当盛行的是相似论和因次分析,其特点是将影响过程的众多变量通过相似变换或因次分析归纳成为数较少的无因次数(无量纲)群形式,然后设计模型试验,求得这些数群的关系。用这两种方法归纳实验结果,甚为有效。对于反应过程,逐级的经验方法沿用了很长时间。由于不可能在满足几何相似和物理量相似的同时满足化学相似条件,用无因次数群关联实验结果以获得反应过程规律的思路归于无效。50年代以后的研究方法直至50年代,才在化学反应工程领域中广泛应用数学模型方法

38、。这一方法的影响波及到化学工程的其他分支,使研究方法出现了一个革新。但即使采用了这个方法,实验工作仍占重要地位,基础数据要依靠实验测定,模型要通过实验得到鉴别,模型参数要由实验求取,模型可靠性要由实验验证。A各种化学工程研究方法的基础是实验工作,不论采用哪一种研究方法,都应力求使实验工作有效、可靠和简易可行。各种理论、各种方法以及计算机的应用,目的都是为使实验工作更能揭示事物的规律,更为节省时间、人力和费用。在上述方法的应用中,多方面体现了过程分解(将一个复杂过程分解为两个或几个较简单过程),过程简化(较复杂过程忽略次要因素而以较简单过程简化处理)和过程综合(在分别处理分解了的过程后,再将这些

39、过程综合为一)的思想。,试现代工业生产的规模常要求一套装置的年产量达数十万吨或更高。这些装置必然面临大量的工程问题,而且指标稍有下降,就会带来很大的经济损失。科学技术的进步,时时刻刻在创造新的产品和新的工艺。但这些新的产品必须借助工程的手段才能实现工业生产,新的工艺要有经济和技术的合理性才能取代原有工艺。上述装置大型化和新产品、新工艺工业化的问题都属于化学工程的研究范围。化学工程在国民经济中的重要作用是十分明显的。例如将大量烟气中硫、氮氧化物等有害组分脱除后再排放,在实验室达到要求后,进而要在工业规模中实现大量烟气的净化,就必须考虑大规模净化的经济性和可行性,着眼点与实验室研究很不相同。又如化

40、工生产中,要求十分纯净的产品作为原料,如高分子化工中常要求聚合前单体的杂质含量是在百万分之几(ppm)数量级。对于实验室工作来说,这一点并不一定困难,而且小实验也不要求提纯的经济指标。但是要求大型生产装置在低消耗和设备简易可行的条件下做到这一点,却是一个完全不同的课题。这种课题的解决,有赖于单元操作的研究。假使在实验反应器中确定了优选的温度、浓度和反应时间,获得了满意的效果。而在放大过程中,由于流动的不均匀性,物料在反应器中的停留时间(反应时间)出现不均匀,偏离了优选的反应时间。由于反应热效应,大装置中因传热的限制而出现的温度不均匀,使反应温度偏离了优选温度。温度的不均匀必然导致浓度的不均匀。

41、这些效应引起大装置中效率下降,产品成本提高,甚至可能因此失去工业价值而不宜用于生产。这个例子说明化学反应工程研究的作用和意义。另一个例子是工业生产中为适应各过程的需要,时而需要加热,时而需要冷却。在实验室中能耗指标并不重要,但大生产就必须考虑热量的合理利用,应尽可能使加热和冷却相匹配,尽可能利用低位热能。如何合理利用热量,如何合理安排众多的设备,这一课题,是无法用实验方法解决的,而是通过化工系统工程的研究解决的。上述数例说明生产大型化后人们对化学工程知识的紧迫需要。化学工程的成就已能在相当程度上解决这些问题。科研、工作等的网络交流平台发展方向化学工程面临着新的挑战和新的课题,解决这些新课题的过

42、程,必然使化学工程学科得到发展。它的研究范围和应用前景已远远越过了它原有的含义。免费|考研|资料|试题|笔记|课件|复试|分数线|调剂|排名0K8d*D9!2q5kB.|化学工程正向两个方向发展:一方面随着学科的成熟,不断向学科的深度发展;另一方面是不断向新的领域渗透,研究和解决新领域中的新问题。学科的纵深方向为了深入掌握过程的规律,对化学工程中经常遇到的多相物系、高粘度流体和非牛顿型流体的传递规律进行深入系统研究。这些研究不但有利于解决传统研究领域的问题,也有助于了解诸如人体内血液流动等新兴课题。对反应过程中多重定常稳定态问题的研究,既是反应器设计和操作的需要,也是从另一侧面对非线性系统稳定

43、性问题研究所作的贡献。为了使大型装置的设计更为迅速可靠,研究了各种物系物性参数、热力学参数与热化学参数以及相平衡与化学平衡数据,推动了化工热力学研究进一步与实际的结合。在研究方法方面,数学模型方法不断完善,与之相配合的是,以统计理论和信息论为基础的实验设计、数据处理、模型的筛选和鉴别以及模型参数估计等方法。为了进行过程的模拟及多方案计算,发展了多种计算机模拟系统,建立了模型库和数据库,并从定态模拟发展到为过程控制所需要的动态模拟。向新领域的渗透这是客观需要,也是学科发展的动力。在历史上,化学工程就在各种新过程的开发和优化,在无机化工和石油化工等装置大型化的推动下得到发展,如大型径向固定床反应器

44、和催化裂化用流化床反应器的开发技术。在解决石油加工中多组分反应物系处理方法时,发展了集总动力学处理方法,这一方法反过来又可用于处理生物反应过程。在向材料工业渗透过程中,出现了将化学反应工程原理用于聚合过程的聚合反应工程,对于高粘物系传递特性的研究则有了实际应用的课题。随着生物技术的进展,出现了生物化学工程,以解决生物反应器和生物制剂分离等问题,如超过滤技术等。能源短缺的情况,使人们重视低温热源的利用,出现了新型换热器。为了保护环境,也为了开发海洋资源,要求研究低浓度混合物的分离技术,于是出现了新的分离技术,如膜分离、泡沫分离等。用化学工程的观点和方法,研究人体内的生理过程,如药物在人体中的扩散

45、,以及研究人工脏器等,形成了生物医学工程这一新的研究领域。为了探索在离心力场、电场、磁场等作用下的过程规律,出现了场致化学工程。化学工程的原理甚至被应用于研究高纯电子器件的制备,喷气技术等等方面。也就是说,在化工生产领域之外,凡是存在反应过程或传递过程并值得重视的场合,几乎都可以找到化学工程的用武之地。这一认识反映了当今化学工程的概貌。四个人学习规划记得今年9月5号刚刚步入大学校门的时候,些许希冀,些许兴奋,些许迷茫,些许不安,四年之中的学习生活应该怎样度过?四年之后的发展道路又应该延伸向何方?时间如水,光阴似箭,转眼间,大学的第一学期已经离我而去,如今,通过对大学生职业生涯规划课的学习,我已

46、经不再彷徨,不再迷茫,而是明确了目标,找准了方向,并准备为之努力拼搏。大学生职业生涯规划,它是我大学生活的启明星,它是我人生道路的导航塔,它唤醒了我的职业生涯规划意识,它使我系统全面的认识自我并在此基础上找到了适合自己的职业规划道路,总之使我受益匪浅。大学生职业生涯规划课给予我的思维意识与规划方法,不仅仅局限于大学四年的学习生活,而且将会延伸到未来的工作与生活之中去。一自我认识1感性认识从自己的角度来分析:在生活中,我有时喜欢独处,自己一个人读读书或者听听歌,有时喜欢和大家一起玩,经常会从和朋友的聊天中得到一种愉悦的感觉;在学习上,我比较严谨,注重学习过程中细节上的精确性,希望尽可能做得完美,

47、但自制力似乎还不够,容易走神并贪玩。从他人的角度来分析:在家长的眼中,我是个比较听话懂事的孩子;在老师的眼中,我是个比较踏实认真并富有潜力的学生;在朋友的眼中,我是个有时严肃有时搞笑,具有亲和力,比较平易近人的女孩。综上分析,我认为自己的性格特征比较倾向于双面性,有时外向,有时内向,有时好动,有时好静,但总体上是一个开朗乐观的女孩,比较积极进取并且渴望独立,但是有些方面有些情况会缺乏自信。2理性认识根据霍兰德理论分析,我具有社会型,现实型和研究型的复合型特征。一面属于社会型,是因为我容易适应新环境,比较喜欢接受新事物,很爱与人交往并能够在沟通交流之中提升自我。一面属于研究型又一面属于现实型,是

48、因为我肯动脑,善思考,钟爱富有创造性与挑战性的工作,有时喜欢逻辑分析与推理,有时喜欢接受操作性行动性任务,有时喜欢从学识才能的提高上认可自己,有时喜欢在实践操作的完善中证明自己。二专业认识1就业现状当今世界对环境污染问题,新能源的开发,新武器的研制,新材料的合成,以及一些新药物的研制等问题都十分关注,所以我们所从事的就业范围十分广泛。虽然化工专业的学生就业面不窄,但是对于我们本科毕业生来说,就业现状却不容乐观,因为我们现在所学并不细致深入而太过于宽泛,而且我们大多缺乏实际工作经验,所以我们仍需不断提升自己。2就业前景林产化工专业所学内容有,有机化学、物理化学、生物化学、化学原理、化学工程、高分

49、子化学、天然产物化学、林特产品化学组成性质及转化方面的基本理论和基本知识,并接受林产化工生产设计、设备选型和原材料、半成品及成品分析检验等方面的基本训练,具有主要林产品化学加工与生物化学加工工艺流程、设备设计、新产品研究开发、生产过程技术改造等方面的基本能力。能在林产化工、精细化工、制浆造纸、化学工业等领域的企事业单位、科研院所从事林广化工的生产、设计、产品研究开发;适宜到科研部门和学校从事科学研究和教学工作;也适宜继续攻读应用化学及相关学科的硕士学位研究生。三未来的方向分析1职业发展路线到林产化工、精细化工、制浆造纸、化学工业等领域的企业求职,主要从事林广化工的生产、设计、产品研究开发等相关工作。2职业抉择理由通过数据统计研究发现,在当今的社会时代背景下,第一,对于招聘公司来讲,在某种程度上其更倾心于高能力者而非高学历者,一定的工作经验对能力的考核起着极其重要的作用。第二,对于自身来讲,作为一名女生,基于生理、心理等各种原因,本科生的就业率高于研究生。因此,我放弃继续深造而是选择就业,以此提高自己的实战

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁