《一级圆柱齿轮减速器课程设计任务书123复习课程.doc》由会员分享,可在线阅读,更多相关《一级圆柱齿轮减速器课程设计任务书123复习课程.doc(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Good is good, but better carries it.精益求精,善益求善。一级圆柱齿轮减速器课程设计任务书123-课程设计说明书设计名称:机械设计基础课程设计题目:设计带式输送机传动装置学生姓名:专业:班级:学号:指导教师:日期:年月日课程设计任务书专业年级班设计题目带式输送机传动装置已知条件:1.工作情况:两班制,连续单向运转,载荷较平稳,运输带速度允许误差为0.5%;2.使用折旧期:五年;3.动力来源:电力,三相交流,电压380/220V;4.滚筒效率:0.96(包括滚筒与轴承的效率损失)。原始数据表参数题号12345运输带工作拉力F/(KN)3.23.43.52.82.
2、6运输带工作速度V/(m/s)1.51.61.81.51.4卷筒直径D/(mm)400400400450450参数题号678运输带工作拉力F/(KN)2.42.22.1运输带工作速度V/(m/s)1.51.41.5卷筒直径D/(mm)400400500选择的题号为1号,其数据为:运输带工作拉力F=3.2KN运输带工作速度v=1.5m/s卷筒直径D=400mm一、设计任务的分析本课程设计是我们学完机械设计基础课程之后进行的,是培养我们机械设计能力的一次综合训练。这是我们进行毕业设计之前对所学各课程的一次深入的综合性的链接,也是一次理论联系实际的训练。就我个人而言,我希望通过这次课程设计,运用机械
3、设计基础课及有关先修课程,巩固、深化、融会贯通有关机械设计方面的知识,树立正确的设计思想。锻炼自己分析和解决工程实际问题的能力。提高自己的绘图能力,查阅资料的能力,学会编写一般的设计计算说明书。由于能力所限,设计尚有许多不足之处,恳请老师给予指教。二、传动装置的总体设计2.1传动方案的分析题目给定的传动方案为带传动、一级圆柱齿轮减速器传动装置。带传动的承载能力较小,传递相同转矩时,其结构尺寸要比其他传动形式的大,但传动平稳性好,能缓冲吸振,因此宜布置在高速级。一级圆柱齿轮减速器的特点是传动比一般小于5,传递功率可达数万千瓦,效率较高。工艺简单,精度易于保证,一般工厂均能制造,应用广泛。2.2选
4、择电动机(1)选择电动机类型按工作要求选用Y系列全封闭自扇笼型三相异步电动机,电压380V。(2)选择电动机的容量电动机所需工作功率为确定电动机转速:滚筒轴的工作转速:nw=601000V/D=(6010001.5)/(400)=71.66r/min其中联轴器效率1=0.99,滚动轴承效率(1对)2=0.99,闭式齿轮传动效率3=0.97,V带效率3=0.96,滚筒效率3=0.96代入得:传动装装置总效率总=带3轴承齿轮联轴器滚筒=0.960.9930.970.990.96=0.86则工作机所需功率PWPW=FV/1000=3200*1.5/1000=4.8kW则所需电动机所需功率Pd=PW/
5、h=4.8/0.86=5.6kw因载荷平稳,电动机额定功率略大于即可由机械设计基础实训指导附录5查的Y系列电动机数据,选电动机的额定功率为7.5kw.(3)确定电动机转速卷筒轴工作转速:由v=1.5m/s,v带传动的传动比i1=24。而且闭式齿轮单级传动比常用范围为i2=35,则一级圆柱齿轮减速器传动比选择范围为:I总=i1i2620故电动机的转速可选范围为:nd=nwI总=71.66*(620)=429.961433.2r/min,符合这一范围的同步转速有750r/min,1000r/min。现将这两种方案进行比较,将计算出的总传动比列于下表:方案电动机型号额定功率Kw同步转速/满载转速(r
6、/min)总传动比i1Y160M285.5750/72010052Y160L87.5750/72010.053Y132M265.51000/96013.54Y160M67.51000/97013.5则可选用Y160M6电动机,满载转速为1000,额定功率为7.5KW。2.3计算总传动比和分配传动比(1)总传动比:IZ=n电动/n筒=970/71.66=13.5取V带传动的传动比i带=3,则减速器的传动比为:i减=IZ/i带=13.5/3=4.5(2)分配传动比:取i带=3i总=i齿i带i齿=i总/i带=11.68/3=3.892.4计算传动装置的运动和动力参数:1、各轴转速:1轴n1=nm/i
7、1=970/3=323r/min2轴n2=n1/i2=323/4.5=72r/min3滚筒轴nW=n2=72r/min2、各轴的输入功率:1轴P1=Pd*01=5.60.96=5.376kw2轴P2=P1*12=5.37623=5.3760.990.97=5.163KW3滚筒轴Pw=P223=P224=5.1630.990.99=5.06KW3、各轴的输入转矩:电动机的输出转矩Td为:Td=9550Pd/nm=9550(5.6/970)=55.13T/N.m1轴P1(5.376)28.01T/Nm轴T2=9550P2/n2=9550(5.163/72)=62.25T/N.m滚动轴wPwnW(.
8、06/72)=55.13T/N.m根据以上数据,我们可以把它列成一个表格,更能清楚的了解数据:表2轴名功率P/kw转距T/N.m转速n/(r/min)传动比电动机轴(0轴)2.228.017501轴2.0979.8325032轴2.00762.2530.578.12三、齿轮的设计输入轴圆柱齿轮的设计:已知电动机额定功率P=7.5kw,转速970r/min,各轴的转速如:表3转动轴电机轴(1轴)输入轴(2轴)输出轴(3轴)转速n97032372齿数比34由电动机驱动,工作寿命年限为5年,两班制工作,转向不变单向运行,有轻微的振动,启动载荷为名义载荷的K=1.2。1、选择齿轮材料及精度等级:小齿轮
9、选用45钢调质,硬度为220250HBS;大齿轮选用45钢正火,硬度为170210HBS;因为是普通减速器,由表7-7选择8级精度,要求齿面粗糙度Ra3.26.3Um2、按齿面接触疲劳强度设计:因两齿轮均为钢质齿轮,可应用d1求出d1的值,确定有关参数与系数。(1)、转矩1=9.55106P/n1=9.551065.376/323=1.6106N.m(2)、载荷系数及材料的弹性系数ZE查表7-10取=1.2,查表7-11取ZE=189.8。(3)、齿数Z1和齿宽系数d取小齿轮的齿数Z1=25,则大齿轮齿数Z2=100。因单级齿轮传动为对称布置,而轮齿面又为软齿面,故由表7-14选取d=1(4)
10、、许用接触应力H由图7-25查得小齿轮的接触疲劳强度极限Hlim1=600MPa;大齿轮的接触疲劳强度Hlim2=550MPaN1=60n1jLh60*480*1*(2*8*365*10)1.682x109N2=N1/I=4.45x108由图7-24查得ZN1=1,ZN2=1.06(允许有一定的点蚀)。由表7-9查得SH=1由式(7-15)得H1=600MPaH2=583MPa故d1t=58.06mmM=d1/Z1=58.06/25=2.3mm由表7-2取标准模数m=2.5mm4、按齿根弯曲疲劳强度校核由式(7-12)求出F,如FF,则校核合格。确定有关系数与参数:齿形系数YF由表7-12查得
11、YF1=2.65,YF2=2.18应力修正系数YS由表7-13查得YS1=1.59,YS2=1.80。许用弯曲应力F由图7-26查得Hlim1=205MPa,Hlim2=190MPa由表7-9查得SF=1.3由图7-23查得YN1=YN2=1,由式7-16得F1=158MPaF2=146MPa故0.0270.027齿根弯曲疲劳强度校核合格。5、验算齿轮的圆周速度vV=3.17m/s由表7-7可知,选8级精度是合适的。6、几何尺寸的计算。对比计算结果,有齿面接触疲劳强度计算的模数m大于有齿根弯曲疲劳强度计算的模数,由于齿轮模数m的大小主要取决与弯曲强度所决定的承载能力,仅于齿轮直径(即模数与齿数
12、的乘积)有关,可取由弯曲强度算得的模数2.33并就近圆整为标准值m=2.5mm,按接触强度算得的分度圆直径d177.82,来计算应有的齿数。于是有:z131.6取z232,则z2uz12.91x3293.12取z2=94这样设计的齿轮传动,即满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,并做了结构紧凑,避免浪费。4.几何尺寸计算(1)计算中心距a=161.38mmbarccos=arccos=13.298因b值改变不多,故参数ea、Kb、ZH等不必修正。(2)计算大、小齿轮的分度圆直径d1=81.97mmd2=240.22mm(3)计算齿轮宽度b=dd1=1x81.97=81.97mm圆整
13、后取B285mm;B190mm根据以上数据我们可以制成表格:齿轮参数法向模数m,n=2.5齿数z132z294压力角20中心距a=161.38分度圆直径d181.97d2240.22齿轮宽度B250B1=552.3. 选择润滑方式闭式齿轮传动,齿轮的圆周速度v12m/s,常将大齿轮的轮齿浸入油池中进行浸油润滑(推荐使用中负荷工业齿轮油,润滑油运动粘度.)四、轴的设计与校核:从动轴设计1、选择轴的材料,确定许用应力选轴的材料为45号钢,调质处理。查2表13-1可知:b=650Mpa,s=360Mpa,b+1bb=215Mpa0bb=102Mpa,-1bb=60Mp2、按扭转强度估算轴的最小直径:
14、单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:45钢取C=118。则d118(2.53/121.67)1/3mm=32.44mm,考虑键槽的影响以及联轴器孔径系列标准,取d=35mm3、齿轮上作用力的计算齿轮所受的转矩:T=9.55106P/n=9.551062.53/121.67=198582N齿轮作用力:圆周力:Ft=2T/d=2198582/195N=2036N径向力:Fr=Fttan200=2036tan200=741N4、轴的结构设计轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。1)联轴器的
15、选择可采用弹性柱销联轴器,可得联轴器的型号为HL3联轴器:3582GB5014-852)确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定,轴通过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合分别实现轴向定位和周向定位3)轴的各段直径的确定:将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,
16、装轴处d3应大于d2,取d3=45mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5=60满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.4)选择轴承型号.由1P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.5)确定轴各段直径和长度段:d1=35mm长度取L1=50mmII段:d2=40mm初选用6209深沟球轴承,其内径为45mm,宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应
17、有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:L2=(2+20+19+55)=96mmIII段直径d3=45mmL3=L1-L=50-2=48mm段直径d4=50mm长度与右面的套筒相同,即L4=20mm段直径d5=52mm.长度L5=19mm由上述轴各段长度可算得轴支承跨距L=96mm6)按弯矩复合强度计算求分度圆直径:已知d1=195mm求转矩:已知T2=198.58N/m求圆周力:FtFt=2T2/d2=2198.58/195=2.03N求径向力FrFr
18、=Ft/tan=2.03tan200=0.741N因为该轴两轴承对称,所以:LA=LB=48mm1)绘制轴受力简绘制垂直面弯矩图轴承支反力:FAY=FBY=Fr/2=0.74/2=0.37NFAZ=FBZ=Ft/2=2.03/2=1.01NMC1=FAyL/2=0.37962=17.76N/m截面C在水平面上弯矩为:MC2=FAZL/2=1.01962=48.48N/m绘制合弯矩图MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N/m合成转矩:T=9.55(P2/n2)106=198.58N/m绘制当量弯矩图截面C处的垂直弯矩:Mec=MC2+(T)21/2
19、=51.632+(0.2198.58)21/2=65.13N/m主动轴的设计1、 选择轴的材料确定许用应力选轴的材料为45号钢,调质处理。b+1bb=215Mpa0bb=102Mpa,-1bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:45钢取C=118,考虑键槽的影响以系列标准,取d=22mm。3、齿轮上作用力的计算齿轮所受的转矩T=9.55106P/n=9.551062.64/473.33=53265N齿轮作用力:单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。齿轮靠油环和套筒实现
20、,轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定,轴通过两端轴承盖实现轴向定位。4确定轴的各段直径和长度初选用6206深沟球轴承,其内径为30mm,宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。五、键的选择输入轴上L-上半联轴器与轴连接平键截面b*h=12mmx8mm,L=56mm在中轴上L-上的平键截面b*h=20mmx12mm,L=70mm输出轴上的齿轮的平键截面b*h=20mmx12mm,L=70mm,L-半联轴器与轴连接的平键截面b*h
21、=16mmx10mm,L=80mm六、箱体尺寸的设计减速器箱体是减速器的重要组成部分,常用减速器箱体由箱坐和箱盖两部分组成,用以支持和固定轴系零件,保证转动件的运转、润滑,实现与外界的密封。箱体材料一般选用灰口铸铁,如HT150、HT200等。灰口铸铁具有良好的铸造性和减震性。在重型减速器中为了提高箱体的强度,也可采用铸钢,如ZG15、ZG25等,除此之外,箱体也可使用钢板焊接而成,焊接箱体比铸造箱体轻1/41/2。生产周期短,适于单件生产,但焊接时易变形,故要求较高的技术并应在焊后做退火处理。在满足强度、刚度的前提下,同时考虑结构紧凑、制造安装方便、质量轻及使用要求的进行经验设计。减速器箱体
22、尺寸如6-1表所示:表6-1名称符号尺寸确定尺寸箱座壁厚0.025a1810箱盖壁厚10.02a1810箱盖凸缘厚度b11.5115箱座凸缘厚度b1.515箱座底凸缘厚度b22.525地脚螺钉直径df0.036a1225地脚螺钉数目n250a500,n=66轴承旁连接螺栓直径d10.75df18盖与座连接螺栓直径d2(0.50.6)df12连接螺栓d2的直径l125200200轴承端盖螺钉直径d3(0.40.5)df10检查孔盖螺钉直径d4(0.30.4)df6定位销直径d(0.70.8)d28dfd1d2至外箱壁距离C124Df、d2至凸缘边的距离C222轴承旁凸台半径R1C222凸台高度h
23、h外箱壁至轴承座端面距离l1C1+C2+(510)54齿轮顶圆与内箱壁距离11.215齿轮端面与箱体内壁距离212箱盖、箱座肋厚m1,mm1=0.851,m2=0.85m1=8.5,m=8.5轴承端盖外径D2150轴承旁连接螺栓距离SD(22.5)d1150箱座深度Hdds/2(3050)90箱座高度HHd(510)110箱座宽度Ba120七、设计小结通过这次设计,使我加深了对所学知识的理解,并对于展开式减速的基本理论、基本方法有一个系统的完整概念,培养了我综合运用所学知识独立解决齿轮、轴、轴承、箱体设计中的实际问题的能力和开发创新精神。并且锻炼了我对实际问题如何进行思考,如轴的强度、轴承的寿
24、命、齿轮失效等问题。以及怎样在工程上合理的设计和解决问题的能力,最大的收获就是学会了将我们平时所学的理论知识运用到实际当中去。程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。当然,在实际的设计过程中,也存在很多问题,因此,在今后的学习与实践中,我会更加的努力,克服自己在设计中的不足,不断改进和提高自身水平。另外,我对齿轮啮合的设计也有了一个全面的认识,同时,也发现自己在理论知识的运用和动手实践等方面的能力有待进一步的加强。本次设计是在老师的指导下,我们才能顺利完成,我们也学到了很多书本以外的东西,并且懂得将如何去珍惜!在此感谢老师们的谆谆教导。对本次的课程设计,恳请老师给于指正!参考文献1.王少岩,郭玲.机械设计基础实训指导.大连:大连理工大学出版社,2009.2.濮良贵机械设计北京:高等教育出版社,20063徐灏.机械设计手册.北京:机械工业出版社,19914.王大康.机械设计课程设计.北京.北京工业大学出版社.20005.濮良贵机械原理北京:高等教育出版社,20066.刘鸿文.材料力学北京:高等教育出版社,2004-