基于单片机的步进电机控制器的设计论文教学内容.doc

上传人:1595****071 文档编号:52280932 上传时间:2022-10-22 格式:DOC 页数:72 大小:833.50KB
返回 下载 相关 举报
基于单片机的步进电机控制器的设计论文教学内容.doc_第1页
第1页 / 共72页
基于单片机的步进电机控制器的设计论文教学内容.doc_第2页
第2页 / 共72页
点击查看更多>>
资源描述

《基于单片机的步进电机控制器的设计论文教学内容.doc》由会员分享,可在线阅读,更多相关《基于单片机的步进电机控制器的设计论文教学内容.doc(72页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Good is good, but better carries it.精益求精,善益求善。基于单片机的步进电机控制器的设计论文-专科生毕业设计(论文)(2011届)课题名称基于单片机的步进电机控制器设计系别机电工程系专业应用电子技术班级电子200805姓名邹义江学号200803041319指导教师李敏、游佳起讫时间:2010年6月30日2010年12月20日(共20周)基于单片机的步进电机控制系统设计目录第1章绪论31.1引言31.2步进电机常见的控制方案与驱动技术简介51.2.1常见的步进电机控制方案51.2.2步进电机驱动技术7第2章步进电机概述102.1步进电机的分类102.2步进电机

2、的工作原理112.2.1结构及基本原理112.2.2两相电机的步进顺序112.3步进电机的工作特点14第3章系统的硬件设计163.1系统设计方案163.1.1系统的方案简述与设计要求163.1.2系统的组成及其对应功能简述163.2单片机最小系统183.2.1AT89S51简介183.2.2单片机最小系统设计233.2.3单片机端口分配及功能243.3串口通信模块243.4数码管显示电路设计253.4.1共阳数码管简介253.4.2共阳数码管电路图263.5电机驱动模块设计273.5.1L298简介273.5.2电机驱动电路设计283.6驱动电流检测模块设计303.6.1OP07芯片简介303

3、.6.2ADC0804芯片简介323.6.3电流检测模块电路图353.7独立按键电路设计36第4章系统的软件实现374.1系统软件主流程图374.2系统初始化流程图384.3按键子程序39第五章总结43致谢44参考文献45摘要:本文应用单片机、步进电机驱动芯片、字符型LCD和键盘阵列,构建了集步进电机控制器和驱动器为一体的步进电机控制系统。二维工作台作为被控对象通过步进电机驱动滚珠丝杆在X/Y轴方向联动。文中讨论了一种以最少参数确定一条圆弧轨迹的插补方法和步进电机变频调速的方法。步进电机控制系统的开发采用了软硬件协同仿真的方法,可以有效地减少系统开发的周期和成本。最后给出了步进电机控制系统的应

4、用实例。Inthispaper,microcontroller,steppermotordriverchips,characterLCDandkeypadarray,buildasetofsteppermotorcontrolleranddriverasoneofthesteppingmotorcontrolsystem.Two-dimensionaltableasachargedobjectbysteppermotordriveballscrewinX/Yaxislinkage.Thispaperdiscussesaminimumofparameterstodeterminethetraje

5、ctoryofacircularinterpolationmethodandthemethodoffrequencycontrolsteppermotor.Steppermotorcontrolsystemhasbeendevelopedusingthesoftwareandhardwareco-simulationmethod,caneffectivelyreducethesystemdevelopmentcycleandcost.Finally,thesteppermotorcontrolsystemapplicationexamples.关键词:步进电机控制系统,插补算法,变频调速,软硬

6、件协同仿真第1章绪论1.1引言步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、Pulsemotor或Stepperservo,其应用发展已有约80年的历史。步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。每来一

7、个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率范围内通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点1。正是由于步进电机具有突出的优点,所以成了机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和

8、计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用2。比如在数控系统中就得到广泛的应用。目前世界各国都在大力发展数控技术,我国的数控系统也取得了很大的发展,我国已经能够自行研制开发适合我国数控机床发展需要的各种档次的数控系统。虽然与发达国家相比,我们我国的数控技术方面整体发展水平还比较低,但已经在我国占有非常重要的地位,并起了很大的作用。除了在数控系统中得到广泛的应用,近年来由于微型计算机方面的快速发展,使步进电机的控制发生了革命性变革。优点明显的步进电机被广泛应用在电子计算机的许多外围设备中,例如打印机,纸带输送机构,卡片阅读机,主动轮驱动机构和存储器存取机构等,步进电机

9、也在军用仪器,通信和雷达设备,摄影系统,光电组合装置,阀门控制,数控机床,电子钟,医疗设备及自动绘图仪,数字控制系统,工具机控制,程序控制系统以及许多航天工业的系统中得到应用3。因而,对于步进电机控制的研究也就显得尤为重要了。为了得到良好的控制性能,对步进电机的控制的研究就一直没有停止过,许多重大的技术得以实现。上世纪80年代以后,由于微型计算机以多功能的姿态出现,步进电动机的控制方式变得更加灵活多样。原来的步进电机控制系统采用分立元件的控制回路,或者集成电路,不仅调试安装复杂,要消耗大量元器件,而且一旦定型之后,要改变控制方案就一定要重新设计电路,不利于系统的改进升级。基于微型单片机的控制系

10、统则通过软件来控制步进电机,能够更好地发挥步进电机的潜力。因此,用微型单片机控制步进电机己经成为了一种必然的趋势,也符合数字化的时代发展要求。还比如为了适应一些领域中高精度定位和运行平稳性的要求,出现的步进电机细分驱动技术,就包括振荡器、环行分配器控制的细分驱动、基于单片机斩波恒流驱动、基于单片机的直流电压驱动三种常见驱动方式,除上述三种步进电机的驱动方案之外,目前报道的驱动方案还有根据汇编语言或C语言进行软件开发,通过串行或并行通行的方式实现机与步进电机控制器之间的数据通信,最终实现由PC机直接控制步进电机的方法。但是在有些应用场合,并不需要高精度的控制,而是需要在满足一般工作要求的情况下,

11、尽量使控制系统做到:系统硬件结构简单,成本低;功能较为齐全;适应性强;电机各种运行状态指示一目了然,操作方便;系统抗干扰能力强,可靠性高等要求。本论文就是采用这个思路进行设计。一般步进电机控制器都用硬件实现,虽然电路可以做到了高集成度,可价格较贵,功能相对较单一,并且设计要求有所改变,就得改变整个硬件电路,比较麻烦。而采用单片机的软件和硬件结合进行控制,运用其强大的可编程和运算功能,充分利用单片机的各种资源,能灵活的对步进电机进行控制,实现其不同模式、步数、正反转、转速等控制,如果需改变控制要求,一般只需改变软件就能适应新的环境,并且在本设计中利用动态扫描技术,把显示电路和键盘电路有机的结合起

12、来,能做到一定的人机交换,而且为了抗干扰,提高可靠性,具有一定的应用价值。1.2步进电机常见的控制方案与驱动技术简介1.2.1常见的步进电机控制方案1、基于电子电路的控制步进电机受电脉冲信号控制,电脉冲信号的产生、分配、放大全靠电子元器件的动作来实现。由于脉冲控制信号的驱动能力一般都很弱,因此必须有功率放大驱动电路。步进电机与控制电路、功率放大驱动电路组成一体,构成步进电机驱动系统。此种控制电路设计简单,功能强大,可实现一般步进电机的细分任务。这个系统由三部分组成:脉冲信号产生电路、脉冲信号分配电路、功率放大驱动电路。系统组成如图1.1所示。图1.1基于电子电路控制系统此种方案即可为开环控制,

13、也可闭环控制。开环时,其平稳性好,成本低,设计简单,但未能实现高精度细分。采用闭环控制,即能实现高精度细分,实现无级调速。闭环控制是不断直接或间接地检测转子的位置和速度,然后通过反馈和适当的处理,自动给出脉冲链,使步进电机每一步响应控制信号的命令,从而只要控制策略正确电机不可能轻易失步4。该方案多通过一些大规模集成电路来控制其脉冲输出频率和脉冲输出数,功能相对较单一,如需改变控制方案,必须需重新设计,因此灵活性不高。2、基于PLC的控制PLC也叫可编程控制器,是一种工业上用的计算机。PLC作为新一代的工业控制器,由于具有通用性好、实用性强、硬件配套齐全、编程简单易学和可靠性高等优点而广泛应用于

14、各行业的自动控制系统中。步进电机控制系统有PLC、环形分配器和功率驱动电路组成。控制系统采用PLC来产生控制脉冲。通过PLC编程输出一定数量的方波脉冲,控制步进电机的转角进而控制伺服机构的进给量,同时通过编程控制脉冲频率来控制步进电机的转动速度,进而控制伺服机构的进给速度。环形脉冲分配器将PLC输出的控制脉冲按步进电机的通电顺序分配到相应的绕组。PLC控制的步进电机可以采用软件环形分配器,也可采用硬件环形分配器。采用软件环形分配器占用PLC资源较多,特别是步进电机绕组相数大于4时,对于大型生产线应该予以考虑。采用硬件环形分配器,虽然硬件结构稍微复杂些,但可以节省PLC资源,目前市场有多种专用芯

15、片可以选用。步进电机功率驱动电路将PLC输出的控制脉冲放大,达到比较大的驱动能力,来驱动步进电机。采用软件来产生控制步进电机的环型脉冲信号,并用PLC中的定时器来产生速度脉冲信号,这样就可以省掉专用的步进电机驱动器,降低硬件成本。但由于PLC的扫描周期一般为但由于PLC的扫描周期一般为几毫秒到几十毫秒,相应的频率只能达到几百赫兹,因此,受到PLC工作方式的限制及其扫描周期的影响,步进电机不能在高频下工作,无法实现高速控制。并且在速度较高时,由于受到扫描周期的影响,相应的控制精度就降低了。3、基于单片机的控制采用单片机来控制步进电机,实现了软件与硬件相结合的控制方法。用软件代替环形分配器,达到了

16、对步进电机的最佳控制。系统中采用单片机接口线直接去控制步进电机各相驱动线路。由于单片机的强大功能,还可设计大量的外围电路,键盘作为一个外部中断源,设置了步进电机正转、反转、档次、停止等功能,采用中断和查询相结合的方法来调用中断服务程序,完成对步进电机的最佳控制,显示器及时显示正转、反转速度等状态。环形分配器其功能由单片机系统实现,采用软件编程的办法实现脉冲的分配。本方案有以下优点:(1)单片机软件编程可以使复杂的控制过程实现自动控制和精确控制,避免了失步、振荡等对控制精度的影响;(2)用软件代替环形分配器,通过对单片机的设定,用同一种电路实现了多相步进电机的控制和驱动,大大提高了接口电路的灵活

17、性和通用性;(3)单片机的强大功能使显示电路、键盘电路、复位电路等外围电路有机的组合,大大提高系统的交互性5。基于以上优点,本次设计采用基于单片机的控制方案。1.2.2步进电机驱动技术步进电动机上个世纪就出现了,它的组成、工作原理和今天的反应式步进电动机没有什么本质区别,也是依靠气隙间的磁导变化来产生电磁转矩。上世纪80年代以后,由于廉价的微型计算机以多功能的姿态出现,步进电动机的控制方式变得更加灵活多样。步进电机驱动技术指的是用步进电机驱动器的驱动级来实现对步进电机各相绕组的通电和断电,同时也是对绕组承受的电压和电流进行控制的技术。到目前为止,步进电机驱动技术通常分为单电压驱动、单电压串电阻

18、驱动、高低压驱动、斩波恒流驱动、升频升压驱动和细分驱动等。单电压驱动是通过改变电路的时间常数以提高电机的高频特性。该驱动方式早在六十年代初期国外就已大量使用,它的优点是结构简单、成本低;缺点是串接电阻器的做法将产生大量的能量损耗,尤其是在高频工作时更加严重,因而它只适用于小功率或对性能指标要求不高的步进电机驱动。单电压串电阻驱动是在单电压驱动技术的基础上为电枢绕组回路串入电阻,用以改善电路的时间常数以提高电机的高频特性。它提高了步进电机的高频响应、减少了电动机的共振,也带来了损耗大、效率低的缺点。这种驱动方式目前主要用于小功率或启动、运行频率要求不高的场合。高低压驱动是指不论电动机的工作频率是

19、多少,在导通相的前沿用高电压供电来提高电流的上升沿斜率,而在前沿过后采用低电压来维持绕组的电流,即采用加大绕组电流的注入量以提高出力,而不是通过改善电路的时间常数来使矩频性能得以提高。但是使用这种驱动方式的电机,其绕组的电流波形在高压工作结束和低压工作开始的衔接处呈凹形,致使电机的输出力矩有所下降。这种驱动方式目前在实际应用中还比较常见。为了弥补高低压电路中电流波形的下凹,提高输出转矩,七十年代中期研制出斩波电路,该电路由于采用斩波技术,使绕组电流在额定值上下成锯齿形波动,流过绕组的有效电流相应增加,故电机的输出转矩增大,而且不需外接电阻,整个系统的功耗下降,效率较高,因而恒流斩波电路得到了广

20、泛应用,本文正是应用恒流斩波技术实现了驱动控制。为改善恒流驱动方式的低频特性,设计一个低速时低电压驱动,高速时高电压驱动的电路,使其成为一个由脉冲频率控制的可变输出电压的开关稳压驱动电源。在低速运行时,电子控制器调节功率开关管的导通角,使线路输出的平均电压较低,电动机不会像在恒流斩波驱动下那样在低速容易出现过冲或共振现象,从而避免产生明显的振荡。当运行速度逐渐变快时,平均电压渐渐提高以提供给绕组足够的电流。调频调压线路性能优于恒电压和恒电流线路,但实际运行中需要针对不同参数的电机,相应调整其输出电压与输入频率的特性。细分驱动是指在每次脉冲切换时,不是将绕组的全部电流通入或切除,而是只改变相应绕

21、组中电流的一部分,电动机的合成磁势也只旋转步距角的一部分。细分驱动时,绕组电流不是一个方波而是阶梯波,额定电流是台阶式的投入或切除。比如:电流分成n个台阶,转子则需要n次才转过一个步距角,即n细分细分驱动最主要的优点是步距角变小,分辨率提高,且提高了电机的定位精度、启动性能和高频输出转矩:其次,减弱或消除了步进电机的低频振动,降低了步迸电机在共振区工作的几率。可以说细分驱动技术是步进电动机驱动与控制技术的一个飞跃6。1.3本文研究的内容在一般的步进电机工作中,其电源均采用单极性直流电,通过对步进电机的各相绕组按恰当的时序方式通电,就可使其执行步进转动。当某一相绕组通电时相应的两个磁极就分别形成

22、N-S极产生磁场,并与转子形成磁路。在磁场的作用下,转子将转动一定的角度,使转子齿与定子齿对其,从而使步进电机向前“走”一步。转子的角位移大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入的脉冲同步。只要能正确控制输入的电脉冲数、频率以及电机各相绕组通电的相序,即可得到所需要的转角、转速及转向,通过单片机很容易实现对步进电机的数字控制。本设计采用AT89S51单片机实现对两相步进电机的转速控制。由单片机产生的脉冲信号经过脉冲分配器后分解出对应的四相脉冲,分解出的四相脉冲经驱动电路功率放大后驱动步进电机的转动。本课题的研究目的之一就是设计一套硬件系统较简单、经济,但功能较为齐全,适应性

23、强,操作方便,交互性强,可靠性高的步进电机控制系统。第2章步进电机概述2.1步进电机的分类步进电动机的种类很多,从广义上讲,步进电机的类型分为机械式、电磁式和组合式三大类型。按结构特点电磁式步进电机可分为反应式(VR)、永磁式(PM)和混合式(HB)三大类;按相数分则可分为单相、两相和多相三种。目前使用最为广泛的为反应式和混合式步进电机7。(1)反应式步进电机(VariableReluctance,简称VR)反应式步进电机的转子是由软磁材料制成的,转子中没有绕组。它的结构简单,成本低,步距角可以做得很小,但动态性能较差。反应式步进电机有单段式和多段式两种类型;(2)永磁式步进电机(Perman

24、entMagnet,简称PM)永磁式步进电机的转子是用永磁材料制成的,转子本身就是一个磁源。转子的极数和定子的极数相同,所以一般步距角比较大。它输出转矩大,动态性能好,消耗功率小(相比反应式),但启动运行频率较低,还需要正负脉冲供电;(3)混合式步进电机(Hybrid,简称HB)混合式步进电机综合了反应式和永磁式两者的优点。混合式与传统的反应式相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪声低、低频振动小。这

25、种电动机最初是作为一种低速驱动用的交流同步机设计的,后来发现如果各相绕组通以脉冲电流,这种电动机也能做步进增量运动。由于能够开环运行以及控制系统比较简单,因此这种电机在工业领域中得到广泛应用。由于本设计的设计目的更注重整个系统的有机结合,所以只采用反应式步进电机7。2.2步进电机的工作原理2.2.1结构及基本原理步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产

26、生旋转的磁场。每来一个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。电机将电能转换成机械能,步进电机将电脉冲转换成特定的旋转运动。每个脉冲所产生的运动是精确的,并可重复,这就是步进电机为什么在定位应用中如此有效的原因。通过电磁感应定律我们很容易知道激励一个线圈绕组将产生一个电磁场,分为北极和南极,见图2.1所示。定子产生的磁场使转子转动到与定子磁场对直。通过改变定子线圈的通电顺序可使电机转子产生连续的旋转运动。图2.1激励线圈产生电磁场2.2.2两相电机的步进顺序1、两相电机的单相通电

27、步进顺序在图2.2中我们很清晰的展示了在单相通电时一个两相步进电机的典型的步进顺序。在第1步中,两相定子的A相通电,因异性相吸,其磁场将转子固定在图示位置。当A相关闭、B相通电时,转子顺时针旋转90。在第3步中,B相关闭、A相通电,但极性与第1步相反,这促使转子再次旋转90。在第4步中,A相关闭、B相通电,极性与第2步相反。重复该顺序促使转子按90的步距角顺时针旋转89。图2.2两相电机的单相通电步进顺序2、两相电机的双相通电步进顺序图2.2中显示的步进顺序称为“单相激励”步进。更常用的步进方法是“双相激励”,其中电机的两相一直通电。但是,一次只能转换一相的极性,见图2.3所示。在第1步中,两

28、相定子的A相和B相同时通电,因异性相吸,再加上力的相互作用关系,其磁场将转子固定在图示step1位置。在第2步中,两相定子的A相关闭,而B和a相(此时的a相通电极性与第1步A相反)同时通电,因异性相吸,再加上力的相互作用关系,其磁场将转子固定在图示step2位置。在第3步中,两相定子的a相和b相同时通电,因异性相吸,再加上力的相互作用关系,其磁场将转子固定在图示step3位置。在第4步中,两相定子的b相和A相同时通电,因异性相吸,再加上力的相互作用关系,其磁场将转子固定在图示step4位置。按照这样的通电方式电机就转过了一周89。两相步进时,转子与定子两相之间的轴线处对直。由于两相一直通电,本

29、方法比“单相通电”步进多提供了41.1%的力矩,但输入功率却为2倍。图2.3两相电机的双相通电步进顺序3、步进电机的半步工作方式电机也可在转换相位之间插入一个关闭状态而走“半步”。这将步进电机的整个步距角一分为二。例如,一个90的步进电机将每半步移动45,见图2.4。但是,与“两相通电”相比,半步进通常导致15%30%的力矩损失(取决于步进速率)。在每交换半步的过程中,由于其中一个绕组没有通电,所以作用在转子上的电磁力要小,造成了力矩的净损失。从原理图我们很容易看到半步工作方式其实就是将两相电机的单相通电工作方式和两相电机的双相通电工作方式相互结合起来。两相步进电机的工作模式有两相四拍和两相八

30、拍等两种,其中我们在图2.2和图2.3中展示的都叫做两相四拍工作模式,而下面的2.4图展示的就是两相八拍工作模式89。图2.4两相电机的半步步进顺序第3章系统的硬件设计3.1系统设计方案3.1.1系统的方案简述与设计要求本设计采用单片机AT89S51来作为整个步进电机控制系统的运动控制核心部件,采用了电机驱动芯片L298及其外围电路构成了整个系统的驱动部分,再加上作为执行部件的步进电机来构成了一个基本的步进电机控制系统。系统的具体功能和要求如下:1.单片机最小系统板的设计;2.设计兼有两相两拍和两相四拍的脉冲分配器;3.实现步进电机的启停、正转、反转控制;4.驱动电路可提供电压为12V,电流为

31、0.3A的驱动信号;5.能实现步进电机的转速调节,最低转速为25转/分,最高转速为100转/分;6.步进电机的转速由数码管显示;7.键盘扫描电路的设计3.1.2系统的组成及其对应功能简述整个系统的组成包括单片机最小系统,电机驱动模块,串口下载模块,数码管显示模块,电机驱动电流检测模块,独立按键等模块组成。具体框图如图3.1所示:图3.1系统总体框图单片机最小系统作为整个系统的控制核心,它主要负责产生控制步进电机转动的脉冲,通过单片机的软件编程代替环形脉冲分配器输出控制步进电机的脉冲信号,步进电机转动的角度大小与单片机输出的脉冲数成正比步进电机转动的速度与输出的脉冲频率成正比,而步进电机转动的的

32、方向与输出的脉冲顺序有关。同时单片机系统还负责处理来自电机驱动电流检测模块检测到的电流值。与此同时,单片机将会把电机转速,电机的转动方向,以及电流检测模块检测到的电机驱动的电流通过数码管显示出来。电机驱动模块负责将单片机发给步进电机的信号功率放大,从而驱动电机工作。串口下载模块主要是负责实行计算机和单片机之间的通信,将在计算机里面编写好的程序下载到单片机芯片当中。数码管显示模块就主要是显示电机转速,电机转向,和通过电机的电流等系统的实时信息。电机驱动电流检测模块主要是检测通过电机驱动芯片的电流,然后通过运放将检测到的信号放大,最后将放大后的信号通过模数转换芯片ADC0804处理后送给单片机。独

33、立按键作为一个外部中断源,和单片机端口连接,通过它设置了电机的正转,反转,加速,减速,显示电机电流等功能。采用了中断和查询相结合的方法来调用中断服务程序,完成了对步进电机的最佳的及时的控制。本节主要是在第一章和第二章的基础上引出了本论文将要采用的设计方案,并详细的清楚的一条条列出了设计要实现的基本设计要求。然后是基于我的设计方案,比较简单的但有条理的描述了系统的各个部分的组成以及其对应的基本功能。通过这一章的内容,我们能对本设计有一个简单的总体的把握,既是能清楚的知道本题目的设计内容,设计方法,以及最终的预期目标。33.2单片机最小系统3.2.1AT89S51简介AT89S51是美国ATMEL

34、公司生产的低功耗,高性能CMOS8位单片机,片内含4kbytes的可系统编程的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准8051指令系统及引脚。它集Flash程序存储器既可在线编程(ISP)也可用传统方法进行编程及通用8位微处理器于单片芯片中,功能强大。1、主要性能参数与MCS-51产品指令系统完全兼容4k字节在系统编程(ISP)Flash闪速存储器1000次擦写周期4.05.5V的工作电压范围全静态工作模式:0Hz33MHz三级程序加密锁1288字节内部RAM32个可编程IO口线2个16位定时计数器6个中断源全双工串行UART通道低功耗空闲和掉电

35、模式中断可从空闲模唤醒系统看门狗(WDT)及双数据指针掉电标识和快速编程特性灵活的在系统编程(ISP字节或页写模式)2、功能特性概述AT89S51提供以下标准功能:4k字节Flash闪速存储器,128字节内部RAM,32个IO口线,看门狗(WDT),两个数据指针,两个16位定时计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89S51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时计数器,串行通信口及中断系统继续工作。掉电方式保存RAM的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位

36、。3、引脚功能说明3.2AT89S51该设计使用到的单片机芯片对应管脚名称位置等如图3.2的引脚功能图详细说明。VCC:电源电压GND:地P0口:P0口是一组8位漏极开路型双向I0口,也即地址数据总线复用口。作为输出口用时,每位能驱动8个TTL逻辑门电路,对端口写“l”可作为高阻抗输入端用。在和数据总线复用,在访问期间激活内部上拉电阻。在F1ash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)。P1口:Pl是一个带内部上拉电阻的8位双向IO口,Pl的输出缓冲级可驱动(吸收或输出电流)4个TTL

37、逻辑门电路。对端口写“l”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。P2口:P2是一个带内部上拉电阻的8位双向IO口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVXDPTR指令)时,P2口送出高8位地址数据。在访问8位地址的外部数据存储器(如执行MOVXRi指令

38、)时,P2口线上的内容(也即特殊功能寄存器(SFR)区P2寄存器的内容),在整个访问期间不改变。Flash编程或校验时,P2亦接收高位地址和其它控制信号。P3口:P3口是一组带有内部上拉电阻的8位双向IO口。P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对P3口写入“l”时,它们被内部上拉电阻拉高并可作为输入端口。作输入端时,被外部拉低的P3口将用上拉电阻输出电流(IIL)。P3口除了作为一般的IO口线外,更重要的用途是它的第二功能,如下表所示:P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。具体功能如表2.1所示表3.1P3口的引脚及功能端口引脚第二功能P3

39、.0RXD(串行输入口)P3.1TXD(串行输出口)P3.2INT0(外部中断0)P3.3INT1(外部中断1)P3.4T0(定时/计数器0外部输入)P3.5T1(定时/计数器1外部输入)P3.6WR(外部数据存储器写选通)P3.7RD(外部数据存储器读选通)RST:复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。WDT溢出将使该引脚输出高电平,设置SFRAUXR的DISRT0位(地址8EH)可打开或关闭该功能。DISRT0位缺为RESET输出高电平打开状态。ALEPROG:当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节

40、。即使不访问外部存储器,ALE仍以时钟振荡频率的16输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。对F1ash存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位置位后,只一条M0VX和M0VC指令ALE才会被激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE无效。PSEN:程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89S51由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输

41、出两个脉冲。当访问外部数据存储器,没有两次有效的PSEN信号。EAVPP:外部访问允许。欲使CPU仅访问外部程序存储器(地址为0000HFFFFH),EA端必须保持低电平(接地)。需注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU则执行内部程序存储器中的指令。F1ash存储器编程时,该引脚加上+12V的编程电压Vpp。XTALl:振荡器反相放大器及内部时钟发生器的输入端。XTAL2:振荡器反相放大器的输出端。存储器结构:MCS-51单片机内核采用程序存储器和数据存储器空间分开的结构,均具64KB外部程序和数据的寻址空间。程序存储器:如果EA引

42、脚接地(GND),全部程序均执行外部存储器。在AT89S51,假如EA接至Vcc(电源+),程序首先执行地址从0000H0FFFH(4KB)内部程序存储器,再执行地址为1000HFFFFH(60KB)的外部程序存储器。数据存储器:AT89S51的具128字节的内部RAM,这128字节可利用直接或间接寻址方式访问,堆栈操作可利用间接寻址方式进行,128字节均可设置为堆栈区空间。4、晶体振荡器特性AT89S51一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别是该放大器的输入端和输出端。这个放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起构成自激振荡器。外接石英晶体(或陶瓷

43、谐振器)及电容Cl、C2接在放大器的反馈回路构成并联振荡电路。对外接电容Cl、C2虽然没十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程序及温度稳定性。如果使用石英晶体,我们推荐电容使用30pF10pF,而如使用陶瓷谐振器建议选择40pF10pF。用户也可以采用外部时钟。这种情况下,外部时钟脉冲接到XTAL1端,即内部时钟发生器的输入端,XTAL2则悬空。由于外部时钟信号是通过一个2分频触发器后作为内部时钟信号的,所以对外部时钟信号的占空比没有特殊要求,但最小高电平持续时间和最大的低电平持续时间应符合产品技术条件的要求。5、Flash闪速存储器的并行编

44、程AT89s51单片机内部4k字节的可快速编程的Flash存储阵列。编程方法可通过传统的EPROM编程器使用高电压(+12V)和协调的控制信号进行编程。AT89S51的代码是逐一字节进行编程的。编程方法:编程前,须设置好地址、数据及控制信号,AT89S51编程方法如下:1在地址线上加上要编程单元的地址信号。2在数据线上加上要写入的数据字节。3激活相应的控制信号。4将EAVpp端加上+12V编程电压。5每对Flash存储阵列写入一个字节或每写入一个程序加密位,加上一个ALEPROG编程脉冲。每个字节写入周期是自身定时的,大多数约为50us。改变编程单元的地址和写入的数据,重复15步骤,直到全部文

45、件编程结束。3.2.2单片机最小系统设计采用AT89S51单片机构成了控制系统的核心,其基本模块就主要包括复位电路和晶体震荡电路。在本设计当中,单片机的P0口、P1口、P2口、P3口全部参与系统工作,单片机最小系统的接线如图3.3所示:图3.3单片机最小系统图3.2.3单片机端口分配及功能1、其中P0口用于控制数码管的具体显示功能,既是数码管的段选。2、P1口主要用于控制电机驱动芯片L298的工作,以及ADC0804芯片的编程的读写控制。3、P2口主要用于控制数码管的公共端,既是数码管的位选。与此同时还处理键盘扫描电路的。4、P3口主要用于负责处理ADC0804的模数转化芯片的工作。3.3串口

46、通信模块本设计采用串口通信,来实现计算机与单片机的通信。其具体的电路图如图3.4所示。图3.4串口通信模块3.4数码管显示电路设计本设计的显示部分可以用液晶显示的方案可供选择,液晶显示和数码管显示的区别主要体现在以下几个方面:数码管显示内容单一,而液晶显示器显示内容丰富,因为液晶一般都是七段八字的只能显示单一的内容,而液晶显示的内容就很丰富;数码管还比液晶显示耗电,而且使用液晶也比使用数码管显得美观。但是控制液晶显示器的时候占用的系统资源多,编程更复杂,最关键的是液晶显示的成本是数码管的几十倍,所以考虑到应用价值,最终还是确定选用数码管实现本设计的显示部分功能。3.4.1共阳数码管简介四位共阳

47、数码管的管脚分配如下图3.5所示:图3.5四位共阳数码管管脚定义数码管的管脚排列:从数码管的正面观看,左下角的那个脚为1脚,从1脚开始,按照逆时针方向排列依次是1脚到12脚,其中12、9、8、6为公共角,为位选信号输入端。剩余的八个脚是段选信号输入端,其对应方式是A-11、B-7、C-4、D-2、E-1、F-10、G-5、DP-3。只有详细的了解了数码管的管脚定义,以及段选位选情况,我们才能通过编程对其正常的显示进行很好的控制。在本设计当中采用了数码管动态扫描的方式进行显示,下面我们对数码管动态扫描显示作一详细介绍。数码管动态显示介面是单片机中应用最为广泛的一种显示方式之一,动态驱动是将所有数码管的8个显示笔划a,b,c,d,e,f,g,dp的同名端连在一起,另外为每个数码管的公共极COM增加位元选通控制电路,位元选通由各自独立的I/O线控制,当单片机输出字形码时,所有数码管都接收到相同的字形码,但究竟是那个数码管会显示出字形,取决于单片机对位元选通COM端电路的控制,所以我们只要将需要显示的数码管的选通控制打开,该位元就显示出字形,没有选通的数码管就不会亮。通过分时轮流控制各个LED数码管的COM端,就使

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁