期权套利策略专题报告:原理、架构与交易.docx

上传人:X** 文档编号:52242496 上传时间:2022-10-22 格式:DOCX 页数:42 大小:1.36MB
返回 下载 相关 举报
期权套利策略专题报告:原理、架构与交易.docx_第1页
第1页 / 共42页
期权套利策略专题报告:原理、架构与交易.docx_第2页
第2页 / 共42页
点击查看更多>>
资源描述

《期权套利策略专题报告:原理、架构与交易.docx》由会员分享,可在线阅读,更多相关《期权套利策略专题报告:原理、架构与交易.docx(42页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、期权套利策略专题报告:原理、架构与交易1. 引言期权是金融市场中重要的投资工具,其非线性的特征丰富了投资者的收 益结构。从 2015 年 2 月上证 50 ETF 期权上市交易以来,指数类和商品 期货期权成交量呈现出长期增长的趋势,为投资者提供了越来越多的投 资机会。在期权市场日益发展的背景下,期权套利策略开始登上时代的舞台。期 权合约既具有多样性又具有稳定的规律性,多样性是指收益结构与合约 参数的多种多样,而期权价格、不同期权价格关系存在稳定的规律。稳 定规律性意味着可以用精密的模型对它们定价,精密模型像是一个瞄准 镜,时刻帮助我们捕捉有效市场的位置。与此同时,市场参与者利用期 权的多样性扩

2、充自己的投资工具箱,在交易中推动有效市场的位置时刻 变动、偏离有效位置。期权套利策略带着瞄准镜走进市场的狙击手,精 准狙击市场对有效状态的瞬时偏离,从中赚取收益。精密定价模型可以辅助投资者量化捕捉期权市场套利机会,从理论层面 保障了收益的稳健性,而精密定价模型往往比较复杂,这增加了套利的 参与门槛,使得期权套利策略对于多数投资者来说是一个“黑箱子”,用 时真正具备优秀定价的投资者可以从中获取丰厚收益。本篇报告我们希望打开期权套利的黑箱子,我们将介绍目前市场主流期 权套利策略,围绕策略基本理论原理、算法实现框架、策略相对优势与 前景展望构建完整的期权套利策略研究与实践框架,助力投资者利用期 权工

3、具增强投资收益。2. 期权套利策略理论原理期权套利策略包括波动率套利和波动率曲面套利。对于某个标的资产, 市场上所有到期时间和执行价格的隐含波动率构成了期权的隐含波动 率曲面。如果特定合约隐含波动率明显偏高或偏低,则可以做多或者做 空相应的期权,实现波动率套利;如果波动率曲面局部出现异常的起伏, 特定执行价格和到期时间的期权相对于其他合约参数的期权被高估或 者低估,此时可以利用他们相对价格的偏离来进行套利,这是波动率曲 面套利的基本思想。这一部分我们主要介绍两种套利类型的基本原理, 为策略实现奠定理论基础。2.1. 波动率套利波动率套利是一种“绝对套利”的方式,利用的是特定合约隐含波动率 的绝

4、对偏离,构建的套利组合是单个期权合约而非同时做多、做空多个 期权合约,相对来说其操作方式较为简洁,涉及预测未来波动率、动态 Delta 对冲和收益锁定方式三部分基本原理:通过预测未来波动率瞄准套 利机会,动态 Delta 对冲消除市场波动的线性影响,利用 Vega 或 Gamma 的暴露锁定套利收益。本小节将分别对三部分基本原理展开介绍。2.1.1. 预测未来波动率波动率套利核心是预测未来的波动率,将其作为判断隐含波动率偏高或 者偏低的锚。预测未来波动率的方法主要包括:历史波动率法、时间序 列模型(例如 GARCH 模型)、随机波动率模型、人工智能模型等。由于 波动率与其影响变量往往具有非线性

5、的关系,同时波动率随时间可能发 生结构性变化,因此近年来人工智能方法预测波动率逐渐成为业界和学 界的主流模式,例如前馈神经网络丝、Elman 神经网络、Jordan 神经网 络、长短期记忆神经网络等等(Andrea Bucci,2020),人工智能算法与 其他各种模型的组合使用也成为当前研究的前沿方向。前沿方法的探索 与完善提高了对未来股票波动率的预测准确率,为期权定价与套利提供 了越来越坚实的基础。能否准确预测波动率是期权绝对定价能力强弱的重要体现。在期权本质 上,期权是一个波动率工具,其凸性收益构决定了期权权利方本质是波 动率多头,未来市场的波动决定了期权的价值;在定价模型上,经典的 Bl

6、ack-Scholes 公式中波动率是决定价格最重要的变量,隐含波动率成为 期权报价方式;在套利实践上,波动率的预测是比较隐含波动率的基准, 脱离预测基准投资者难以确定套利机会。2.1.2. 动态 Delta 对冲动态 Delta对冲是降低股价变化对套利组合影响的手段。Delta是期权价 格对标的股票价格的偏导数,动态 Delta 对冲是指通过不断买卖一定数 量的股票使得套利组合的 Delta 始终保持为 0,此时组合价值不再受到 标的股票价格变动的线性影响。动态 Delta 中性可以对冲标的股票自身价格变化的影响,仅对市场波动率有所暴露,降低组合的净值波动。动态对冲的效果会受到对冲频率的影响

7、。在 Black-Scholes 模型的假设 下,如果投资者时时刻刻进行 Delta 对冲,则最终可以获得无风险的收 益。实际上,参照 Artur Sepp(2012)的研究,无交易成本的情况下,不 同对冲频率不影响对冲的期望收益,仅对损益的方差有影响,对冲频率 越高,最终损益的方差越小。交易成本也会对对冲效果产生影响,体现 在两方面:(1)交易成本降低对冲的收益,对冲频率越高,整体交易成 本越高;(2)交易成本的波动也会增加最终损益的波动,对冲频率越高, 由交易成本波动带来的组合波动越大。我们使用上证 50 ETF 在 2021 年的数据进行测算,假设所有的资金仓位 均用来 Delta 对冲

8、,我们分别估算了不同对冲频率下的对冲成本以及对 冲组合损益的年化波动率。可以看到,对冲频率对成本的影响十分显著, 每分钟对冲一次,年化对冲成本高达 60%以上,当对冲频率降低到每小 时对冲一次,年化对冲成本降为 7.7%。另一方面,对冲频率对损益波动 的影响非常有限,不同频率下对冲损益年化波动大致在 1%以下。由于对冲频率对对冲成本的影响显著而对组合收益波动的影响有限,在 策略实践中,多数套利参与者每天或者每半天进行一次 Delta对冲,在 波动不大的情况下节约对冲成本。2.1.3. 获利方式:多空 Vega 与多空 Gamma对于波动率套利策略,投资者一般通过两种方式锁定套利收益,这两种 方

9、式在理论上分别通过多空 Vega 和多空 Gamma 实现:(1)多空 Vega。Vega 表示期权价格对隐含波动率变动的敏感性,如果 期权的隐含波动率向投资者期望的方向移动,期权价格的变化会直接提 升套利组合的价值,此时投资者可以直接对期权进行平仓获利。例如当 前期权隐含波动率被明显低估,套利者以较低的价格买入期权,之后期 权的隐含波动率升高到理论值,那么此时套利者可以在更高的价格平仓, 锁定投资收益 = (1 )。与这种获利方式相对应的,在寻找 套利组合时要求更加注重对于未来该期权隐含波动率的预测,例如使用随机波动率模型和机器学习模型预测隐波,利用隐波的变动直接获利。(2)多空 Gamma

10、。Gamma 表示期权价格对标的资产价格的二阶偏导 数,代表着期权价格的凸性,期权的凸性使得做多 Gamma 的 Delta 中性 组合在波动升高的环境中受益,从而可以赚得实现波动率与隐含波动率 的差价。如果事后实现波动率高于购买期权时的隐含波动率,则对冲组合最终能 够获得正收益。与这种获利方式相对应,在寻找套利组合时应当更加注 重对于标的资产未来波动率的预测,通过事后实际波动率与期权隐波的 差值获利。事实上,单个期权 Vega 与 Gamma 的方向一般是相同的,实现波动率与 隐含波动率之间也有很强的关联,在实际操作中套利者可以根据市场情 况同时采用两种方式,在隐波变动不大的情况下保持动态对

11、冲,隐波向 期望方向显著变动时直接平仓锁定收益2.2. 波动率曲面套利波动率套利是利用某个期权产品隐含波动率绝对值的偏离,而波动率曲 面套利是利用不同执行价格和到期时间期权隐含波动率的相对偏离获 取收益。在 Black Scholes 模型的理想情况下,标的资产波动率不受执行价格和到 期时间的影响,所以在这种理想情况下期权的波动率曲面是一个水平面。 然而实际情况下 BS 模型的假设会有所松动,波动率曲面是弯曲的,曲 面弯曲的形状可以从波动率偏度结构和波动率期限结构来理解。理论上 波动率的这两个维度都具有稳定的结构,该结构可以通过模型来刻画, 实际操作中投资者往往会用模型直接刻画符合理论偏度结构

12、和期限结 构的整个波动率曲面。市场上由于投资者对不同期权有不同的交易需求, 造成实际结构与理论结构产生偏离,投资者可以在不同的维度将理论结 构与实际结构对比寻找套利机会。本小节分为两部分,第一部分中我们首先讨论偏度结构和期限结构成因 与理论形态,第二部分我们主要介绍刻画整个波动率曲面的理论模型。2.2.1. 波动率结构成因与理论形态2.2.1.1. 波动率偏度结构给定到期时间,不同执行价格的期权隐含波动率是期权波动率偏度曲线, 偏度曲线一般是一条向左上倾斜的微笑曲线,曲线的形态主要受到标的 资产收益率偏度、峰度的影响。通常所说的“偏度”包含两层含义:1)标的资产对数收益率分布函数并 非对称函数

13、,而是具有一定的左偏性质,即出现大幅负向收益的概率高 于出现大幅正向收益的概率;2)不同执行价格期权隐含波动率曲线具有 向左上倾斜的形态,即隐含波动率曲线具有一定的偏度。实际上,标的 资产收益率的左偏特性是隐含波动率曲线产生偏度的重要原因:相比于 大幅上涨,标的资产更容易出现大幅下跌,所以投资者对对冲大幅下行 风险的需求更高,从而 OTM 看跌期权会具有一定的溢价,这种溢价体 现为低执行价格期权隐含波动率较高,即曲线向左上倾斜。峰度指的是标的资产收益率具有肥尾的特征:相比于正态分布函数,收 益率的分布更容易出现极端值,所以保护大幅下行风险和博取大幅上行 收益的需求会有所提升,表现为 OTM 看

14、跌期权和 OTM 看涨期权会出 现溢价,隐含波动率高于 ATM 期权,从而不同执行价格的隐含波动率 曲线是一条“微笑曲线”。在标的资产收益率偏度和峰度的共同影响之下,不同执行价格期权隐含 波动率曲线表现为向左上倾斜的微笑曲线。其中,(;, )表示 BS 模型计算的隐含波动率,是期权的价值状态(行 权价格/标的资产价格),是当前的时间, + 是期权的到期时间, (, )和(, )分别是标的资产收益分布的偏度和峰度,()、 ()和()是关于价值状态的解析函数。需要说明的是,这里的偏度和 峰度是风险中性测度下收益率的高阶矩,给定效用函数,可以确定其与 现实世界收益率的偏度和峰度之间的定量关系。在上述

15、关系的基础上,投资者可以通过若干核心参数来刻画偏度曲线的 形态,核心参数可以通过期权隐含波动率以及标的资产收益率的历史数 据和市场实时数据进行估计,由于参数本身具有稳定的金融学含义,其 应用于短期市场定价的有效性较高,可用于判断未来短期市场价格偏离 情况。如果市场隐含波动率曲线大幅偏离模型刻画的曲线形态,则表明 当前可能存在一定的套利机会。例如 90%价值状态的隐含波动率大幅低 于 110%价值状态的隐含波动率,则可以通过风险反转组合(Risk Reversal, 做多 90%价值状态的看跌期权,做空 110%价值状态的看涨期权)来做 多偏度,待未来隐含波动率偏度曲线恢复到正常形态可以平仓获利

16、。从具体实例来看,下图中蓝色曲线表示某一时刻上证 50 ETF 期权近月 合约的隐含波动率,橙色曲线是通过 Heston 模型构建出来的波动率偏度 曲线,从图中可以看出,执行价格为 3.2 元的期权隐含波动率被相对高 估,执行价格为 3.1 元和 3.3 元的期权隐含波动率与模型较为接近,此 时可以做空执行价格为 3.2 元的期权同时做多执行价格为3.1 元和 3.3元 的期权,当市场隐含波动率偏度曲线向模型收敛时即可获利。2.2.1.2. 波动率期限结构给定执行价格,不同到期时间的隐含波动率构成了期限结构,一般 ATM 期权期限结构是一条向上倾斜的曲线,这主要是因为投资者具有风险厌 恶的特征

17、,到期时间更远的期权提供的保护和潜在收益越大,所以相对 于期限较短的期权具有一定的溢价,表现为隐含波动率更高。其中表示无穷远的时间点标的资产的波动率,直观上,是一个无条 件波动率,是标的资产波动率的长期均值,是期权的剩余到期时间, 是调整的系数。于是我们可以使用参数模型来刻画 ATM 期权的期限结 构,通过历史数据和市场实时数据可以得到参数的估计值,如果实际隐 含波动率与模型刻画的期限结构存在偏差,说明可能存在一定的套利机 会。实际投资中往往会使用更加精确的模型刻画期限结构,也可以对 OTM 期权的期限结构进行建模,根据模型发出的信号对不同到期时间的期权 进行多空操作,待期限结构回归正常状态时

18、组合可以获利。2.2.2. 波动率曲面模型目前市场上主流的期权定价模型包括三个主要类别:(1) 标的资产建模。这一类模型以标的资产的运动过程为基础,通过 对标的资产价格、波动率以及他们之间相互关系的建模来构建波 动率曲面的偏度结构和期限结构。针对标的资产的建模可以进一 步细分为两种类型:重在描述波动率运动过程的随机波动率模型 例如 Heston 模型,以及一系列围绕标的资产价格运动的勒维过 程(Levy Process)模型,例如跳跃扩散模型。Heston 模型将股价运动与波动率运动过程进行了联合建模,股价与波动率的负相 关关系可以描述期权的偏度,波动率自身的波动率造成了股价收 益率的肥尾,两

19、者共同刻画了期权的偏度曲线;瞬时波动率随时 间的运动可以刻画出期权的期限结构。跳跃扩散模型中,股价瞬 时正向和负向跳跃过程决定了偏度曲线的形态,对股价运动和跳 跃过程的时间序列建模决定了期权波动率的期限结构,两方面因 素共同作用决定了波动率曲面的形态。(2) 隐含波动率运动过程建模。前一类模型主要针对标的资产,通过 标的资产运动过程可以推演出来各个执行价格和到期时间期权 的公允隐含波动率。实际上我们可以直接对隐含波动率运动的随 机过程建模,给定初始状态的隐含波动率曲面,假设风险中性测 度下所有资产价格折现值都是鞅,就可以得到隐含波动率变化过 程的确定性趋势项,由此可刻画隐含波动率曲面的动态变化

20、过程。 由于对隐含波动率的建模可以纳入更多的因子,因此模型解释力 度更高,误差相对更低,但另一方面,隐含波动率模型的因子可 能难以被直观解释,逻辑上的可理解性相对偏低。(3) 直接拟合隐含波动率曲面。前两种模型事先给定了标的资产或 隐含波动率的运动结构,并在此基础上构建起隐含波动率曲面; 而第三类方法直接将市场隐含波动率进行平滑得到满足特定结 构的波动率曲面。对此类模型一般有两种构建的方式,一种是使 用样条(例如正则三次样条、三次 B 样条等)直接拟合曲面,拟 合时限定无套利条件,确保拟合得到的曲面具有良好的结构;直接输入市场数据使用上述方程在参数空间内优化即可拟合得 到隐含波动率曲面,由于自

21、变量使用了“时间平方根”经验法则 做了调整,所以模型曲面具备较好的结构。在本篇报告策略框架部分我们以 Heston 模型为例构建了波动率曲面,因 此这里我们简要介绍 Heston 模型的核心内容。Heston 模型假设附加运 动和波动率运动满足以下随机过程:其中()是股价函数,()是股价运动的方差,1和2是标准布朗运动, 他们之间的相关系数为,即1 2 = 。由此可见,Heston 模型 包括 5 个核心参数:(1)即( = 0)为当前瞬时波动率;(2)为 长期股价的波动方差;(3)为当前股价波动方差向长期方差回归的速率; (4)为股价波动率运动的标准差,波动率自身运动的波动造成了股价收益的肥

22、尾特征,越大意味着股价更有可能出现极端波动,收益肥尾特 征更加显著;(5)是股价运动随机过程与方差运动随机过程的相关系数, 一般为负值,表示股价下跌时市场波动更有可能放大。构建好波动率曲面作为参照之后我们可以判断期权隐含波动率的相对 高低进而确定套利组合,按照套利组合的构建方式我们可以将曲面套利 细分为三种:(1)偏度套利,寻找偏度曲线的异常起伏,使用同一到期 时间的期权构建组合;(2)期限套利,寻找隐含波动率期限结构的局部 异常,使用给定执行价格期权(一般是平值期权)构建套利组合;(3) 曲面套利,如果局部没有合适的偏度套利或期限套利品种组合或组合中 的某些品种缺乏流动性,则可以进行曲面套利

23、,使用执行价格和到期时 间均不同的品种构建套利组合。3. 期权套利策略算法框架期权套利策略核心思路如下:我们认为期权市场价格是总体有效但局部 可能存在偏离的,所以在每一期我们寻找接近市场价格的理论模型曲面, 这样的曲面既包含市场的定价认知又符合各种理论结构,并且在未来短 期能够稳定持续,所以通过与模型曲面的对比可以寻找市场隐含波动率 局部的相对高估与低估,确认市场套利机会,进而可以构建套利组合。上文中提到,期权套利策略包括了波动率套利和曲面套利,市场依据波 动率的绝对偏离和相对偏离做出了该分类系统。从策略基本理论原理来 看,两种套利有不同的操作模式,可以相对独立的进行建模和交易。但 是从本质上

24、看,波动率套利和曲面套利都在利用市场的错误定价,波动 率套利中所谓的“绝对偏离”也是特定合约隐含波动率相对于某个锚的 偏离,从这种意义上来看,两种套利模式都是利用“相对偏离”进行套 利,它们具有统一性。本部分我们将构建系统性的期权套利策略操作框 架,将两种类型的套利融合在统一的体系中,便于我们认知期权套利策 略的整体全貌。具体策略实现包括两大核心模块:(1)构建曲面利用市场数据构建 每一期市场波动率曲面;(2)执行套利交易将模型波动率曲面与市 场波动率曲面对比,构建套利组合,同时对冲 Delta、Vega 等希腊字母, 并在合适的条件下平仓。本小节我们将围绕具体操作方式与技术难点分 别介绍两大

25、核心板块。由于套利策略利用了市场相对于有效状态的偏离,套利过程对时效性的 要求较高,因此套利策略的实现要求我们在日内执行高频交易,这里我 们选择每分钟研究潜在的交易组合,使用股票和期权分钟级 K 线数据作 为算法的输入数据。3.1. 构建波动率曲面3.1.1. 构建曲面主要流程(1)选择合适的交易品种:上证 50 ETF相比于股票市场每日万亿左右的成交额而言,期权市场成交额仍较为有 限,2021 年全年股指类期权成交额为 1.13 万亿元。目前成熟的期权套利 策略一般会选择场内流动性最高的品种进行交易,否则在平仓时容易面 临市场流动性枯竭的风险从而遭受不必要的损失。从 2021 年全年的成交额

26、来看,股指类期权是最为活跃的场内期权品种, 其中华夏上证 50 ETF 与华泰柏瑞沪深 300 ETF 流动性最佳。由于沪深 300 ETF 平均合约价格更高,实际 2021 年成交量(4.68 亿张)低于上证 50 ETF 期权成交量(6.29 亿张),且上证 50ETF 期权上市时间更早,样 本更加充足。故本部分中我们以华夏上证 50 ETF期权为例研究期权套 利策略算法实现。(2)计算每分钟市场隐含波动率曲面为了计算期权的隐含波动率,我们首先需要构建每一期的利率期限结构。 我们假定同一交易日内利率期限结构不变,输入该交易日 0-6 个月中债 国债到期收益率数据作为市场无风险利率,使用三次

27、多项式拟合出该交 易日的期限结构。将期权市场价格、到期时间、执行价格、上证 50 ETF 当前价格以及到期 时间的无风险利率输入 Black-Scholes 模型,即可得到给定期权的隐含波 动率,将不同执行价格和到期时间的隐含波动率汇总就可以得到市场的 隐含波动率矩阵。需要说明的是,同一执行价格和到期时间市场上往往同时存在认购和认 沽两种期权,我们根据当前持仓量大小选择交易活跃的期权品种,一般 而言虚值期权的交易比实值期权更加活跃,因此对于高于当前上证 50 ETF 价格的执行价格,往往认购期权交易更加活跃,低于当前上证 50ETF 价格的执行价格,往往认沽期权交易更加活跃,使用交易活跃的品

28、种构建市场隐含波动率曲面会更加有效地反映市场对波动率的定价。(3)拟合模型参数,构建波动率曲面我们选取 Heston 模型构建波动率曲面 Heston 模型包括 5 个核心参数,给定一组参数组合可以确定一张波动率 曲面。我们在参数空间不断优化可以寻找与市场隐含波动率曲面最为接 近的模型曲面对应的参数组合,进而可以构建出模型的波动率曲面。这 里的“最为接近”指的是所有期权价格与模型价格的误差平方和最小。3.1.2. 构建曲面核心难点:控制曲面的稳定性通过参数拟合的方法构建波动率曲面最大的难点在于构建出的曲面稳 定性较低,这种不稳定性主要来源于两个方面:期权价格数据的不稳定 性和模型拟合的不稳定性

29、:(1)期权数据本身稳定性较弱。流动性较好的期权合约主要是平值附近 的合约,对于深度虚值的合约短时间内成交量很低,有时候可能有些分 钟级 K 线缺少交易数据,而且深度虚值的合约往往价格很低,即使是最 小价格单位的变动也会导致价格变动百分比很高,从而使得计算出的隐 含波动率出现大幅波动。因此对于流动性差的深度虚值合约可能微弱的 交易扰动就会导致局部隐含波动率曲面剧烈变化,进而导致输入数据稳 定性弱,大幅降低策略的稳定性。(2)模型拟合的不稳定性。参数的拟合涉及多个参数的数值优化,求解 过程中可能会收敛得到局部最优解或者得到远偏离参数自身含义的解, 特别是当输入数据出现异常值时。参数的非最优求解或

30、异常解会导致模 型隐含的波动率曲面出现异常剧烈波动或者与市场隐含波动率曲面差距较大。以上两个因素会共同作用导致模型拟合结果稳定性差,而期权套利策略 的核心是对期权的定价能力,模型波动率曲面缺乏稳定性必然会削弱其 定价效果,大幅降低策略收益。另一方面,直观上 Heston 模型的各个参 数都具有很强的金融学意义,短期内参数的剧烈变化也违背了直觉逻辑。 因此,对于此类高频策略来说,需要改进算法增加策略的稳定性。我们迭代使用三种方法来控制模型的稳定性:(1)针对模型求解的不稳 定性,模型的参数具有很强的金融学意义,直觉上这些参数在时间序列 上应该稳定的,相互之间也有一定的联系,所以我们可以通过参数组

31、时 序关系建模限制参数波动范围,降低其波动;(2)针对市场数据的不稳 定性,我们可以根据期权成交量调整数据权重降低流动性差的异常值对 模型的冲击;(3)其他简单有效解决两方面不稳定性的方法,通过移动 平均对参数进行平滑操作。此外在策略中我们加入了部分全局最优的算 法,降低模型求解陷入局部最优的可能性。具体操作方式包括以下步骤:(1) 确定全局最优。在给定的时间点使用全局最优算法计算最优参数。 由于全局最优算法消耗计算量较大,因此我们每隔一小时计算一 次全局最优,即每天 9:30、10:30、13:00、14:00 四个时点。这些 时点市场流动性较好,价格信息有效性更高。(2) 从全局最优出发寻

32、找局部最优。局部最优算法对参数初始值较 为敏感,不同的初始值可能会导致差异巨大的求解结果。我们认 为最优模型参数短期是具有稳定性的,因此每一分钟求解局部最 优解时,我们从最新一期全局最优解出发,寻找局部最优解,在 模型参数保持稳定的情况下,这种方式可以快速寻找到每一期的 全局最优。(3) 寻找最优解时,我们加入参数取值范围限制。首先,我们根据参 数的实际金融学含义设定最大波动范围,参数取值将被限定在最 大波动范围内。其次,我们根据参数组的时间序列关系构建参数 变化过程模型(滚动时间窗口),每一期依据上一期的参数取值 以及上证 50 ETF 涨跌幅计算当期参数取值 99%置信区间,寻找 全局/局

33、部最优解时将参数空间限制在置信区间内。(4) 对输入数据调整权重。我们依据当期各个期权成交量的相对占比 设定为损失函数加权,流动性差的期权对损失函数的影响被降低, 这些期权短期的异常值不会对最优波动率曲面的求解造成大幅 影响。此外,这里我们选取下凸函数作为损失函数,局部异常值 的影响被进一步降低。(5) 将经过上述步骤得到的模型参数组合时间序列做指数移动平均。 移动平均之后的参数组合作为最终参与定价的参数,用其构建波 动率曲面、构建组合并执行交易。策略初试运行阶段我们只通过 市场数据构建波动率曲面,经过一段时间的运行待曲面稳定性提 高之后再将曲面用于期权的定价以及交易。3.2. 执行套利交易3

34、.2.1. 执行套利交易主要流程(1)构建套利组合经过前面章节的内容我们可以构建出稳健的波动率曲面,由波动率曲面 可以计算得到所有期权的模型价格,将期权市场价格与模型价格对比, 可以筛选出市场价格被严重低估与严重高估的品种,进而将高估与低估 的品种进行适当组合构建套利组合。在每一分钟,我们可以构建多组套 利组合,依据套利组合中不同品种执行价格、到期时间的关系可以将其 分为波动率套利、偏度套利、期限套利、曲面套利组合。套利组合的选 取是执行套利交易的关键难点,我们将在下一部分详细介绍构建组合的 方式。选定套利组合之后,我们需要在不同品种之间分配权重,由于多头部分 和空头部分有不同的 Vega 方

35、向,我们在配置权重时可以直接构建 Vega 中性组合;但是如果套利组合只有做多或做空的品种,即套利组合为波 动率套利,那么此时我们需要利用 Vega 暴露获取收益,不需要额外对冲 其 Vega 风险。(2)动态 Delta 对冲我们需要在两种情况下对组合进行 Delta 对冲:1) 初始构建组合时。初始构建组合时,期权头寸一般均会有一定的 Delta 暴露,依据期权合约数量以及合约 Delta 大小,直接计算需要 用来对冲的上证 50 ETF 数量,即可保持初始状态下的 Delta 中性。2) 事先给定的 Delta对冲时点。开仓之后直到平仓之前,我们需要不断 进行动态 Delta 对冲。在理

36、论原理部分中我们可以看到,对冲频率主 要影响了交易成本,对组合波动的影响较低,所以在执行策略的过 程中我们选择以较低的频率进行对冲,选取了市场流动性较好的时 点,包括上午 9:30、下午 1:00、下午 15:00。为了防止过度对冲,我 们可以设定 Delta 对冲的阈值,仅当需要对冲的 ETF 数量超过已持 仓 ETF 数量的一定比例时进行对冲操作。一般同一时间策略会持有若干套利组合,不同组合之间可能会有相互对 冲的效果,所以对于整个策略而言最优的 Delta 对冲方式是将所有套利 组合作为一个整体对冲,这样可以最大限度地降低对冲成本以及对冲的 资金占用。然而从策略研究的角度,对每一个组合分

37、别对冲是更加方便 有效的方法,因为这样可以精确计算经过对冲之后每一个套利组合自身 的盈利情况,便于后续对套利算法的评估与改进优化。需要说明的是,Delta 对冲是为了降低未来股票价格变动对组合的冲击, Delta 本质上是期权价格对股票价格敏感程度的预测。由于套利组合选取 了市场价格严重偏离理论价格的期权,所以使用市场价格作为输入参数 计算得到的 Delta 有较高的偏差,使用模型价格计算 Delta 是更优的方 式。(3)计算组合资金占用为了评估组合的收益,需要计算组合的左右头寸合计资金占用的情况, 对于期权多头,资金占用数量可以直接使用期权价格计算得到,而对于 期权空头,义务方最终支付的金

38、额可能远超过期权自身的价格,所以按 照规定需要缴纳保证金,对于上证 50 ETF 期权来说,义务方保证金计算 规则如下:认购期权保证金= 合约前结算价 + Max(12% 合约标的前收盘价 认购期权虚值,7% 合约标的前收盘价) 合约单位认沽期权保证金= Min合约前结算 + Max(12% 合约标的前收盘价 认沽期权虚值,7% 行权价格),行权价格 合约单位当期权处于虚值状态时,保证金的数量远大于期权合约的价格;当期权 处于实值状态时,保证金数额与合约价格差距缩小。对于上证 50 ETF 空头头寸,根据融资融券试点交易实施细则,“投资者融券卖出时,融券保证金比例不得低于 50%”,所以我们直

39、接假设融券 卖出 ETF 保证金比例等于 50%,由此可以计算每个套利组合 Delta 对冲 所占用的资金。(4)计算每期期权盈利,检查平仓条件每一时刻我们逐一计算所有套利组合的盈亏,并且检查是否满足平仓条 件。套利组合的盈亏比率=组合盈亏金额/累计占用资金,这里的累计占 用资金包括了期权多头权利金、空头保证金以及 Delta 对冲过程中买卖 ETF 占用的资金。如果满足以下三个条件之一,即触发平仓条件:1) 止盈平仓。如果盈亏比率超过某一阈值(例如设定为 2%),则对组 合进行止盈平仓。2) 止损平仓。如果盈亏比率低于某个阈值(例如设定为-2%),则对组 合进行止损平仓操作。3) 合约到期平

40、仓。如果套利组合中某一品种即将在下个交易日到期, 为了防止到期前期权价格波动较大给组合带来过大波动,在当天开 盘时对整个组合进行平仓操作。3.2.2. 执行套利交易核心难点:构建套利组合构建套利组合的难点主要体现在两个方面:(1) 风险对冲的需要。曲面套利的优势在于可以通过同时做多做空不 同的品种实现部分风险的对冲,一般合约参数接近的期权具有相 似的风险参数,实操中由于期权合约数量多,难以寻找错误定价 方向相反且风险特征相近的品种形成套利组合。(2) 曲面结构的动态变化。在不同时点波动率曲面结构并非固定,不 同参数期权隐含波动率之差在不断地动态变化中,因此我们难以 用固定的标准来确定波动率曲面

41、局部的结构异常。由于这两方面困难的存在,在执行套利交易的环节中,最为关键的步骤 是选取合适的品种构建套利组合,该环节也是将波动率套利与波动率曲 面套利纳入同一操作框架的关键。套利组合的构建可以分解为以下步骤:(1) 筛选核心品种。通过模型波动率曲面计算出流动性较高的期权的 理论价格,如果某品种期权市场价格偏离理论价格超过一定阈值, 则将该品种作为核心品种,围绕其构建套利组合。对于期权套利 策略而言,可以设定较高的偏离阈值,一方面可以降低由于模型 不稳定造成错误定价的影响,另一方面防止套利组合的数量过多 而压低资金利用效率。实际策略中,可以将偏离阈值设定为 25%。(2) 搜索配对品种。对于每一

42、个核心品种,我们在其执行价格和到期 时间附近搜索具有相反错误定价的品种与之配对。例如,我们可以在相邻三个执行价格、相邻一个到期时间的范围内搜索,如果 核心品种被高估,则我们选取该范围内最被低估品种与其配对。实战中可能有多个品种同时满足条件,这时我们可以设定优先构 建组合的方式:如果相同价格和到期时间的期权有相反的错误定 价,则可以直接构建买卖权平价套利组合,这是一种接近无风险 套利的方式,是最优的套利组合方案;其次,选取相同到期时间 的品种构建偏度套利组合,因为相同到期时间的品种力流动性比 较接近,且持有时间对组合价值的影响较低;如果没有符合前两 个条件的配对品种,可以搜索同一执行价格的品种构

43、建期限套利 组合;最后可以搜索附近其他的品种构建曲面套利组合。如果附近所有期权均没有明显的反方向错误定价,或者他们都不 具有很好的流动性,则说明隐含波动率曲面局部被高估或低估了, 此时可以构建波动率套利组合。这样,我们就可以以统一的方式 将波动率套利和波动率曲面套利纳入完整的算法框架。(3) 检查其他条件。实际策略中,我们还需要检查配对组合是否满足 其他开仓条件。例如,如果策略此前已经构建了完全相同且未平 仓的套利组合,那么不再重复执行该组合的开仓交易,这样可以 避免相同组合在短时间内频繁重复开仓导致仓位过重最终缺乏 足够的流动性做平仓操作。此外,如果组合中包含即将到期的品 种,那么也不适合对

44、该组合做开仓交易,因为临近到期的品种可 能价格波动较高、带来更多不确定性,也有可能未能及时获利合 约就到期终止上市,降低套利效率。3.3. 期权套利收益回测按照前文所述的算法框架我们模拟计算期权套利策略的收益。我们使用 上证 50 ETF 期权作为投资标的,用分钟级别数据进行回测,回测过程中 我们先构建套利组合,然后将资金在不同组合之间进行相应分配,使得 不同套利组合之间实现更好的风险对冲。回测中我们考虑期权的交易费用。期权交易费用主要由三部分构成,包 括结算费 0.3 元每张、上交所手续费 1.3 元每张以及券商佣金 2-5 元不 等。因此我们假设单边交易费用 4 元每张,开仓平仓双边收费。

45、我们使用 2017 年 3 月至 2021 年末的数据进行回测,分别统计每种类型 的回测收益。其中买卖权平价是一类比较特殊的套利组合,同时做多做 空同一执行价格和到期时间的认购和认沽期权,这可以视为一种特殊的 曲面套利;从统计结果中可以看到,这一类套利是收益最高的策略,因 为这种套利组合可以实现 100%的风险对冲,持仓期间也无需动态对冲 各种风险,但是由于这类套利机会可以简单识别,整体而言这种类型的 套利机会相对更少。从整体收益表现来看,每个组合平均可以实现 0.48%的收益,平均胜率 超过 70%,平均持仓时间为 20 天,每年可以实现 18 次资金循环,资金使用效率较高。从累计净值来看,

46、策略净值增长稳健,年化收益10.1%,年化波动率4.38%, 最大回撤仅 2.8%,整体而言具备较高的收益风险性价比。需要注意的是, 策略整体净值的年化收益略高于组合平均的年化收益(0.48% X 365/20 = 8.66%),这是因为计算组合收益时我们对每个组合分别进行动态 Delta 对冲,对冲操作占用了较高的资金,而在整体策略层面,不同组合需要 Delta 对冲的方向是不同的,相互之间本就可以实现一定的抵消,因此对 ETF 的买卖需求有所降低,买卖 ETF 的资金占用相应降低,从而提高了 整体的资金使用效率,一定程度上提高了整体的收益率。为了进一步分析策略净值表现,我们将策略净值收益在

47、不同市场环境下 分解,研究策略在不同环境下的表现。对于期权策略而言,标的资产波 动率变化是最重要的影响因素之一,因此我们分别统计在不同波动率变 化环境中策略的平均收益和胜率。我们按照波动率变化大 小将市场分为 5 组,“最低”组表示波动率下降幅度最大的一组,“最高” 表示波动率上升幅度最大的一组。在不同的市场环境 中,策略均能稳定实现正收益,而且在波动率大幅升高或大幅降低的环 境中策略收益更高,这表明策略没有依靠对波动率的持续暴露获取收益, 而是充分利用了市场环境的变化实现了套利收益,因此,策略具有较高 的稳健性。4. 期权套利策略核心优势:收益稳定与风险分散收益稳定与风险分散是期权套利策略两

48、大核心优势。相比于股票多头类 策略,套利类在拥有可观收益的同时更加稳健,回撤风险和波动率较低; 另一方面,区别于股票统计套利等传统套利方式,期权价格的偏离幅度 可以被精确计算,这从理论层面为期权套利策略的胜率提供了保障。同 时,相对于市场主流投资策略,期权策略是一种另类投资,收益与股票 市场相关性很低,而且在熊市中往往可以获得更高的收益,该特性可以 帮助投资者有效分散股票市场的风险,大大增加了策略的配置价值。4.1. 收益稳健期权套利策略基本原理章节中我们可以看到,期权套利产品通过隐含波 动率的偏离获取收益,根据有效市场理论,市场的错误定价一般会很快 得到市场的纠正,虽然少数情况下策略可能面临错误定价不断扩大的风 险,但这种风险可以通过设置止损线来控制。而且多数期权策略会通过 Delta 对冲与 Vega 对冲消除股票市场的影响,故相比于传统的股票多头 策略,期权套利策略在拥有可观收益的同时更加稳健,回撤风险和波动 率较低。另一方面,股票统计套利等传统的套利方式主要利用了标的的走势趋势、 不同标的的相关关系,策略更侧重经验规律,相比较而言这些经验规律 不确定性略高;而期权有十分成熟的定价模型,波动率曲面具有稳定的 理论结构,期权价格的偏离可以得到精确的量化计算,因此套利具备更 强的逻辑支撑,套利胜率往往更高、更稳健。以私募产品为例,很多优秀

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 研究报告 > 其他报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁