《高一数学下学期知识点复习+经典例题(解析)(共19页).docx》由会员分享,可在线阅读,更多相关《高一数学下学期知识点复习+经典例题(解析)(共19页).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上知识点复习知识点梳理 (一)正弦定理:(其中R表示三角形的外接圆半径)适用情况:(1)已知两角和一边,求其他边或其他角; (2)已知两边和对角,求其他边或其他角。 变形: , , =(二)余弦定理:=(求边),cosB=(求角)适用情况:(1)已知三边,求角;(2)已知两边和一角,求其他边或其他角。(三)三角形的面积:; ;(其中,r为内切圆半径)(四)三角形内切圆的半径:,特别地,(五)ABC射影定理:,(六)三角边角关系:(1)在中,; ; (2)边关系:a + b > c,b + c > a,c + a > b,ab < c,bc <
2、; a,ca > b;(3)大边对大角:考点剖析(一)考查正弦定理与余弦定理的混合使用例1、在ABC中,已知,且=2, ,求的长.例1、解:由正弦定理,得 又 由余弦定理,得 入,得例2、如图所示,在等边三角形中,为三角形的中心,过的直线交于,交于,求的最大值和最小值例2、【解】由于为正三角形的中心,设,则,在中,由正弦定理得:,在中,由正弦定理得:,故当时取得最大值,所以,当时,此时取得最小值变式1、在ABC中,角A、B、C对边分别为,已知,()求的大小;()求的值变式1、解()在ABC中,由余弦定理得 ()在ABC中,由正弦定理得 变式2、在中,为锐角,角所对的边分别为,且(I)求的
3、值; (II)若,求的值。 变式2、解(I)为锐角, (II)由(I)知, 由得,即又 (二)考查正弦定理与余弦定理在向量与面积上的运用例3、如图,半圆O的直径为2,A为直径延长线上的一点,OA=2,B为半圆上任意一点,以AB为一边作等边三角形ABC。问:点B在什么位置时,四边形OACB面积最大?例3、解:设,在AOB中,由余弦定理得: 于是,四边形OACB的面积为 S=SAOB+ SABC 因为,所以当,即时,四边形OACB面积最大例4、在ABC中,角A、B、C的对边分别为a、b、c,(1)求角C的大小; (2)求ABC的面积例4、解:(1)由 4cos2C4cosC解得 0°C1
4、80°,C=60° C60°(2)由余弦定理得c2a2b22ab cos C 即 7a2b2ab 又ab5 a2b22ab25 由得ab6 SABC 变式3、已知向量,且,其中是ABC的内角,分别是角的对边.(1) 求角的大小;(2)求的取值范围.变式3、解:(1)由得由余弦定理得 (2) = 即.(三)考查三角形形状的判断例5、在ABC中,角A,B,C所对的边分别为a,b,c, b=acosC,且ABC的最大边长为12,最小角的正弦值为。(1) 判断ABC的形状;(2) 求ABC的面积。例5、解:(1) b=acosC,由正弦定理,得sinB=sinAcosC,
5、 (#)B=,sinB=sin(A+C),从而(#)式变为sin(A+C)= sinAcosC,cosAsinC=0,又A,CcosA=0,A=,ABC是直角三角形。(2)ABC的最大边长为12,由(1)知斜边=12,又ABC最小角的正弦值为,RtABC的最短直角边为12=4,另一条直角边为SABC=16变式4、在ABC中,若.(1)判断ABC的形状; (2)在上述ABC中,若角C的对边,求该三角形内切圆半径的取值范围。变式4、解:(1)由 可得 即C90° ABC是以C为直角顶点得直角三角形 (2)内切圆半径 内切圆半径的取值范围是例7、在ABC中,已知,试判断ABC的形状。所以,
6、ABC为等边三角形。变式8、在ABC中,cos2,(a,b,c分别为角A,B,C的对边),则ABC的形状为 A正三角形 B直角三角形 C等腰三角形或直角三角形 D等腰直角三角形,a2c2b22a2,即a2b2c2,ABC为直角三角形答案:B变式9、ABC中,若sinA=2sinBcosC,sin2A=sin2B+sin2C,试判断ABC的形状。变式9、解:等腰直角三角形;数列知识点一:通项与前n项和的关系任意数列的前n项和;注意:由前n项和求数列通项时,要分三步进行:(1)求,(2)求出当n2时的,(3)如果令n2时得出的中的n=1时有成立,则最后的通项公式可以统一写成一个形式,否则就只能写成
7、分段的形式.知识点二:常见的由递推关系求数列通项的方法1.迭加累加法:,则,2.迭乘累乘法:,则,知识点三:数列应用问题1.数列应用问题的教学已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型.2.建立数学模型的一般方法步骤.认真审题,准确理解题意,达到如下要求:明确问题属于哪类应用问题;弄清题目中的主要已知事项;明确所求的结论是什么.抓住数量关系,联想数学知识和数学方法,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子表达.将实际问题抽象为数学问题,将已知
8、与所求联系起来,据题意列出满足题意的数学关系式(如函数关系、方程、不等式).规律方法指导1.由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想;2.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.3.加强数列知识与函数、不等式、方程、对数、立体几何、三角等内容的综合.解决这些问题要注意:(1)通过知识间的相互转化,更好地掌握数学中的转化思想;(2)通过解数列与其他知识的综合问题,培养分析问题和解决问题的综合能力.经典例题精析类型一:迭加法求数列通项公式1在数列中,求.总结升华:1. 在数列中,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,
9、则数列不是等差数列.2.当数列的递推公式是形如的解析式,而的和是可求的,则可用多式累(迭)加法得.举一反三:【变式1】已知数列,求.【变式2】数列中,求通项公式.类型二:迭乘法求数列通项公式2设是首项为1的正项数列,且,求它的通项公式.总结升华:1. 在数列中,若为常数且,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列.2若数列有形如的解析关系,而的积是可求的,则可用多式累(迭)乘法求得.举一反三:【变式1】在数列中,求.【变式2】已知数列中,求通项公式.类型三:倒数法求通项公式3数列中,,,求.总结升华:1两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数
10、,这样把数列的每一项都取倒数,这又构成一个新的数列,而恰是等差数列.其通项易求,先求的通项,再求的通项.2若数列有形如的关系,则可在等式两边同乘以,先求出,再求得.举一反三:【变式1】数列中,求.【变式2】数列中,,,求.类型四:待定系数法求通项公式4已知数列中,求.总结升华:1一般地,对已知数列的项满足,(为常数,),则可设得,利用已知得即,从而将数列转化为求等比数列的通项.第二种方法利用了递推关系式作差,构造新的等比数列.这两种方法均是常用的方法.2若数列有形如(k、b为常数)的线性递推关系,则可用待定系数法求得.举一反三:【变式1】已知数列中,求【变式2】已知数列满足,而且,求这个数列的
11、通项公式.类型五:和的递推关系的应用5已知数列中,是它的前n项和,并且, .(1)设,求证:数列是等比数列;(2)设,求证:数列是等差数列;(3)求数列的通项公式及前n项和.总结升华:该题是着眼于数列间的相互关系的问题,解题时,要注意利用题设的已知条件,通过合理转换,将非等差、等比数列转化为等差、等比数列,求得问题的解决利用等差(比)数列的概念,将已知关系式进行变形,变形成能做出判断的等差或等比数列,这是数列问题中的常见策略.举一反三:【变式1】设数列首项为1,前n项和满足.(1)求证:数列是等比数列;(2)设数列的公比为,作数列,使,求的通项公式.【变式2】若, (),求.【变式3】等差数列
12、中,前n项和,若.求数列的前n项和.类型六:数列的应用题6.在一直线上共插13面小旗,相邻两面间距离为10m,在第一面小旗处有某人把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路最短,应集中到哪一面小旗的位置上?最短路程是多少?总结升华:本题属等差数列应用问题,应用等差数列前项和公式,在求和后,利用二次函数求最短路程.举一反三:【变式1】某企业2007年12月份的产值是这年1月份产值的倍,则该企业2007年年度产值的月平均增长率为( )A B C D【变式2】某人2006年1月31日存入若干万元人民币,年利率为,到2007年1月31日取款时被银行扣除利息税(税率为)共计元,则
13、该人存款的本金为()A1.5万元 B2万元 C3万元 D2.5万元【变式3】根据市场调查结果,预测某种家用商品从年初开始的个月内累积的需求量(万件)近似地满足.按比例预测,在本年度内,需求量超过万件的月份是()A5月、6月 B6月、7月 C7月、8月 D9月、10月 【变式4】某种汽车购买时的费用为10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,依次成等差数列递增,问这种汽车使用多少年后报废最合算?(即年平均费用最少)【变式5】某市2006年底有住房面积1200万平方米,计划从2007年起,每年拆除20万平方米的旧住房.假定该市每
14、年新建住房面积是上年年底住房面积的5%.(1)分别求2007年底和2008年底的住房面积;(2)求2026年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)高考题萃1设数列的前项和为.()求;()证明:是等比数列;()求的通项公式.2设数列的前项和为已知,()设,求数列的通项公式;()若,求的取值范围一元二次不等式及其解法一元二次不等式的解集二次函数yax2bxc的图象、一元二次方程ax2bxc0的根与一元二次不等式ax2bxc>0与ax2bxc<0的解集的关系,可归纳为:判别式b24ac>00<0二次函数yax2bxc (a>0)的图象一元二次方程a
15、x2bxc0(a0)的根有两相异实根xx1或xx2有两相同实根xx1无实根一元二次不等式的解集ax2bxc>0(a>0)x|x<x1或x>x2x|xx1Rax2bxc<0(a>0)x|x1<x<x2若a<0时,可以先将二次项系数化为正数,对照上表求解1不等式x(12x)0的解集是()A.B. C(,0) D. 答案:B2不等式9x26x10的解集是()A. B. C. DR答案:B3若关于x的方程x2mx10有两个不相等的实数根,则实数m的取值范围是()A(1,1) B(2,2) C(,2)(2,) D(,1)(1,)解析:选C由一元二次方
16、程有两个不相等的实数根,可得:判别式0,即m240,解得m2或m2.4已知集合AxR|x2|<3,集合BxR|(xm)(x2)<0,且AB(1,n),则m_,n_.解析:因为|x2|<3,即5<x<1,所以A(5,1),又AB,所以m<1,B(m,2),由AB(1,n)得m1,n1.答案:115不等式1的解集为_解析:由1得10,即0,解得x1,或x2.答案:x|x1,或x2解一元二次不等式应注意的问题:(1)在解一元二次不等式时,要先把二次项系数化为正数(2)二次项系数中含有参数时,参数的符号会影响不等式的解集,讨论时不要忘记二次项系数为零的情况(3)解决
17、一元二次不等式恒成立问题要注意二次项系数的符号(4)一元二次不等式的解集的端点与相应的一元二次方程的根及相应的二次函数图象与x轴交点的横坐标相同一元二次不等式的解法典题导入例1解下列不等式:(1)0x2x24;(2)x24ax5a20(a0)自主解答(1)原不等式等价于借助于数轴,如图所示,原不等式的解集为.(2)由x24ax5a20知(x5a)(xa)0.由于a0故分a0与a0讨论当a0时,x5a或xa;当a0时,xa或x5a.综上,a0时,解集为;a0时,解集为.由题悟法1解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax2bxc0(a0),ax2bxc0
18、(a0);(2)计算相应的判别式;(3)当0时,求出相应的一元二次方程的根;(4)根据对应二次函数的图象,写出不等式的解集2解含参数的一元二次不等式可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏以题试法1解下列不等式:(1)3x22x80;(2)ax2(a1)x10(a0)解:(1)原不等式可化为3x22x80,即(3x4)(x2)0.解得2 x,所以原不等式的解集为.(2)原不等式变为(ax1)(x1)0,因为a0,所以(x1)0.所以当a1时,解为x1;当a1时,解集为;当0a1时,解为1x.综上,当0a1时,不等式的解集为;当a1时,
19、不等式的解集为;当a1时,不等式的解集为.一元二次不等式恒成立问题典题导入例2已知f(x)x22ax2(aR),当x1,)时,f(x)a恒成立,求a的取值范围自主解答法一:f(x)(xa)22a2,此二次函数图象的对称轴为xa.当a(,1) 时,f(x)在1,)上单调递增,f(x)minf(1)2a3.要使f(x)a恒成立,只需f(x)mina,即2a3a,解得3a1;当a1,)时,f(x)minf(a)2a2,由2a2a,解得1 a1.综上所述,a 的取值范围为3,1法二:令g(x)x22ax2a,由已知,得x22ax2a0在1,)上恒成立,即4a24(2a)0或解得3 a1.所求a的取值范
20、围是3,1一题多变本题中的“x1,)改为“x1,1)”,求a的取值范围解:令g(x)x22ax2a,由已知,得x22ax2a0在1,1)上恒成立,即4a24(2a)0或或解得3a1,所求a的取值范围是3,1 .由题悟法1对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方;恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方2一元二次不等式恒成立的条件:(1)ax2bxc0(a0)(xR) 恒成立的充要条件是:a0且b24ac0.(2)ax2bxc0(a0)(xR)恒成立的充要条件是:a0且b24ac0.以题试法2若关于x的不等式x2axa>0的
21、解集为(,),则实数a的取值范围是_;若关于x的不等式x2axa3的解集不是空集,则实数a的取值范围是_ 解析:由1<0,即a24(a)<0,得4<a<0;由20,即a24(3a)0,得a6或a2.答案:(4,0)(,62,)一元二次不等式的应用典题导入例3某商品每件成本价为80元,售价为100元,每天售出100件若售价降低x成(1成10%),售出商品数量就增加x成要求售价不能低于成本价(1)设该商店一天的营业额为y,试求y与x之间的函数关系式yf(x),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x的取值范围自主解答(1)由题意得y100
22、83;100.因为售价不能低于成本价,所以100800.所以yf(x)20(10x)(508x),定义域为0,2(2)由题意得20(10x)(508x)10 260,化简得8x230x130.解得x.所以x的取值范围是.由题悟法解不等式应用题,一般可按如下四步进行:(1)认真审题,把握问题中的关键量,找准不等关系;(2)引进数学符号,用不等式表示不等关系;(3)解不等式;(4)回答实际问题以题试法3某同学要把自己的计算机接入因特网现有两家ISP公司可供选择公司A每小时收费1.5元;公司B在用户每次上网的第1小时内收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超
23、过17小时,按17小时计算)假设该同学一次上网时间总是小于17小时,那么该同学如何选择ISP公司较省钱?解:假设一次上网x小时,则公司A收取的费用为1.5x元,公司B收取的费用为元若能够保证选择A比选择B费用少,则1.5x(0x17),整理得x25x0,解得0x5,所以当一次上网时间在5小时内时,选择公司A的费用少;超过5小时,选择公司B的费用少基本不等式【2016年高考会这样考】1考查应用基本不等式求最值、证明不等式的问题2考查应用基本不等式解决实际问题【复习指导】1突出对基本不等式取等号的条件及运算能力的强化训练2训练过程中注意对等价转化、分类讨论及逻辑推理能力的培养基础梳理1基本不等式:
24、(1)基本不等式成立的条件:a0,b0.(2)等号成立的条件:当且仅当ab时取等号2几个重要的不等式(1)a2b22ab(a,bR);(2)2(a,b同号);(3)ab2(a,bR);(4)2(a,bR)3算术平均数与几何平均数设a0,b0,则a,b的算术平均数为,几何平均数为,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数4利用基本不等式求最值问题已知x0,y0,则(1)如果积xy是定值p,那么当且仅当xy时,xy有最小值是2.(简记:积定和最小)(2)如果和xy是定值p,那么当且仅当xy时,xy有最大值是.(简记:和定积最大) 一个技巧运用公式解题时,既要掌握公式的正用,也
25、要注意公式的逆用,例如a2b22ab逆用就是ab;(a,b0)逆用就是ab2(a,b0)等还要注意“添、拆项”技巧和公式等号成立的条件等 两个变形(1)2ab(a,bR,当且仅当ab时取等号);(2) (a0,b0,当且仅当ab时取等号)这两个不等式链用处很大,注意掌握它们 三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视要利用基本不等式求最值,这三个条件缺一不可(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致考向
26、一利用基本不等式求最值【例1】(1)已知x0,y0,且2xy1,则的最小值为_;(2)当x0时,则f(x)的最大值为_审题视点 第(1)问把中的“1”代换为“2xy”,展开后利用基本不等式;第(2)问把函数式中分子分母同除“x”,再利用基本不等式解析(1)x0,y0,且2xy1,332.当且仅当时,取等号(2)x0,f(x)1,当且仅当x,即x1时取等号答案(1)32(2)1 利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”常用的方法为:拆、凑、代换、平方【训练1】 (1)已知x1,则f(x)x的最小值为_(2)已知0x,则y2x5x2的最大值为_(3)若x,y(
27、0,)且2x8yxy0,则xy的最小值为_解析(1)x1,f(x)(x1)1213当且仅当x2时取等号(2)y2x5x2x(25x)·5x·(25x),0x,5x2,25x0,5x(25x)21,y,当且仅当5x25x,即x时,ymax.(3)由2x8yxy0,得2x8yxy,1,xy(xy)10102102×2× 18,当且仅当,即x2y时取等号,又2x8yxy0,x12,y6,当x12,y6时,xy取最小值18.答案(1)3(2)(3)18考向二利用基本不等式证明不等式【例2】已知a0,b0,c0,求证:abc.审题视点 先局部运用基本不等式,再利用
28、不等式的性质相加得到证明a0,b0,c0,2 2c;2 2b;2 2a.以上三式相加得:22(abc),即abc. 利用基本不等式证明不等式是综合法证明不等式的一种情况,证明思路是从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理最后转化为需证问题【训练2】 已知a0,b0,c0,且abc1.求证:9.证明a0,b0,c0,且abc1,3332229,当且仅当abc时,取等号考向三利用基本不等式解决恒成立问题【例3】若对任意x0,a恒成立,则a的取值范围是_审题视点 先求(x0)的最大值,要使得a(x0)恒成立,只要(x0)的最大值小于等于a即可解析若对任意x0,
29、a恒成立,只需求得y的最大值即可,因为x0,所以y,当且仅当x1时取等号,所以a的取值范围是答案 当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解【训练3】已知x0,y0,xyx2y,若xym2恒成立,则实数m的最大值是_解析由x0,y0,xyx2y2 ,得xy8,于是由m2xy恒成立,得m28,m10,故m的最大值为10.答案10考向三利用基本不等式解实际问题【例3】某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m房屋正面的造价为400元/m2,房屋侧面的造价为150
30、元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用当侧面的长度为多少时,总造价最低?审题视点 用长度x表示出造价,利用基本不等式求最值即可还应注意定义域0x5;函数取最小值时的x是否在定义域内,若不在定义域内,不能用基本不等式求最值,可以考虑单调性解由题意可得,造价y3(2x×150×400)5 8009005 800(0x5),则y9005 800900×25 80013 000(元),当且仅当x,即x4时取等号故当侧面的长度为4米时,总造价最低 解实际应用题要注意以下几点:(1)设变量时一般要把求最大值或最小值的变量定义为
31、函数;(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值;(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解【训练3】东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元从今年起,工厂投入100万元科技成本并计划以后每年比上一年多投入100万元科技成本预计产量每年递增1万件,每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n).若水晶产品的销售价格不变,第n次投入后的年利润为f(n)万元(1)求出f(n)的表达式;(2)求从今年算起第几年利润最高?最高利润为多少万元?解(1)第n次投入后,
32、产量为(10n)万件,销售价格为100元,固定成本为元,科技成本投入为100n万元所以,年利润为f(n)(10n)100n(nN*)(2)由(1)知f(n)(10n)100n1 00080520(万元)当且仅当,即n8时,利润最高,最高利润为520万元所以,从今年算起第8年利润最高,最高利润为520万元阅卷报告忽视基本不等式成立的条件致误【问题诊断】 利用基本不等式求最值是高考的重点,其中使用的条件是“一正、二定、三相等”,在使用时一定要注意这个条件,而有的考生对基本不等式的使用条件理解不透彻,使用时出现多次使用不等式时等号成立的条件相矛盾.,【防范措施】 尽量不要连续两次以上使用基本不等式,若使用两次时应保证两次等号成立的条件同时相等.【示例】已知a0,b0,且ab1,求的最小值错因两次基本不等式成立的条件不一致实录a0,b0,且ab1,ab2.又2 ,而ab,4,24,故的最小值为4.正解a0,b0,且ab1,(ab)1232 32.当且仅当即时,的最小值为32.【试一试】设ab0,则a2的最小值是()A1 B2 C3 D4尝试解答a2a2ababa(ab)ab2 2 224.当且仅当a(ab)且ab,即a2b时,等号成立答案D专心-专注-专业