《计算化学及其应用精选文档.ppt》由会员分享,可在线阅读,更多相关《计算化学及其应用精选文档.ppt(48页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、计算化学及其应用本讲稿第一页,共四十八页LCAO 近似Hartree-Fock轨道的数值解法只能对原子和双原子分子使用双原子分子的轨道类似与原子轨道的线性组合比如,H2中的Sigma键 1sA+1sB对多原子分子,其轨道必须用原子轨道的线性组合(LCAO)来近似表示本讲稿第二页,共四十八页基函数称为基函数其中心通常选在原子上当然,也可以使用比原子轨道更具有一般性,更灵活的基函数当基函数足够多足够好时,得到的分子轨道就能相当准确本讲稿第三页,共四十八页基函数的一般形式径向部分角度部分本讲稿第四页,共四十八页基组的角度部分本讲稿第五页,共四十八页5D/6D与7F/10F5D/6D:x2,y2,z2
2、(x2+y2+z2)s轨道xy,yz,zx7F/10F:x3,xy2,xz2 x(x2+y2+z2)y3,y2z,y2x y(x2+y2+z2)z3,z2x,z2y z(x2+y2+z2)xyzp轨道本讲稿第六页,共四十八页径向部分:Slater型函数(STO)对氢原子,它是精确的通常用于原子计算有正确的渐进性质(r)在核处满足尖点条件(r0)三中心和四中心双电子积分没有可用的公式本讲稿第七页,共四十八页STO与类氢离子的径向函数1s,2p,3d,4f的指前因子为单项式,它们之间相互正交为了保证其它的s轨道(2s,3s,.)与1s正交,其它的s轨道的指前因子都是多项式,3p,4p,.,4d,5
3、d,.,5f,6f,.也是如此多项式在积分时*d会分解成N2项,计算比较麻烦,于是Slater引入了Slater型原子轨道,它相当于把类氢离子径向波函数正交化限制去掉,而要求其指前因子为单项式!(为分子计算提供条件)本讲稿第八页,共四十八页类氢离子径向分布函数本讲稿第九页,共四十八页径向部分:Gaussian型函数(GTF)本讲稿第十页,共四十八页Gaussian型函数的多中心积分GTO乘积定理:双中心函数乘积=单中心函数本讲稿第十一页,共四十八页STO和GTF的比较在r比较大时,衰减太快在核处没有尖点优点:所有的双电子积分都可以用公式直接计算本讲稿第十二页,共四十八页收缩Gaussian基函
4、数用GTF的线性组合来构造一个更适合进行分子计算的基函数一个GTF称为一个素基函数(primitive basis function)本讲稿第十三页,共四十八页基组基组就是给一些原子确定出的一组指数和收缩系数基组的类型最小基组双zeta,三zeta基组等阶层分裂基组极化函数弥散函数本讲稿第十四页,共四十八页最小基组只有中性原子的轨道壳层才给定基函数比如对C元素有1s,2s,2px,2py,2pzSTO-3G3 GFT拟合一个STO STO的指数从原子计算得到,用一些典型的分子来调整这也称为单zeta基组(zeta,是Slater型轨道的指数)本讲稿第十五页,共四十八页双Zeta基组(DZ)最小
5、基组中的每个基函数都变成两个一组比较紧(离原子核近,指数大),另一组比较松(离原子核较元素,指数比较小)因此在描写电子云方面,径向上有一定的伸缩性如果原子在分子中失去一部分电子,其密度就会收缩如果原子得到一些电子,其密度就会膨胀本讲稿第十六页,共四十八页双Zeta基组使得在径向上有一定伸缩性Zeta1 Zeta2C1 +C2远核 近核C1=1,C2=0C1=0,C2=1C11,C21+本讲稿第十七页,共四十八页价层分裂基组只有价层的基组加倍(基函数越少,计算越快,计算成本越小)内层轨道用最小基组,因为它们原子化合成分子的过程中几乎不变3-21G(1s用3个GTF,近核的2s,2p用2个GTF,
6、远离核的2s,2p用1个GTF)6-31G(1s用6个GTF,近核的2s,2p用3个GTF,远离核的2s,2p用1个GTF)本讲稿第十八页,共四十八页极化函数角动量更大的函数添加到基组中时,轨道在角度方向就有了更大的可变性比如对氢原子加上p函数,对C原子加上d函数如果不加极化函数,即使使用大基组,Hartree-Fock计算得到的NH3的结构是平面型的没有极化函数时,环丙烷的张力太大6-31G(d)(也写作 6-31G*)对非氢原子添加d函数6-31G(d,p)(也写作6-31G*)对氢原子添加p函数且对非氢原子添加d函数DZP 带极化函数的DZ本讲稿第十九页,共四十八页Effect of P
7、olarization Functions本讲稿第二十页,共四十八页弥散函数把指数很小的函数添加到基组中需要的情形:阴离子,电负性高的原子F,Cl,计算电子亲和能和气相酸度,弱作用(氢键,范德华作用)6-31+G 对非氢原子添加弥散s和p函数6-31+G 对氢原子添加弥散s函数且对非氢原子添加弥散s和p函数本讲稿第二十一页,共四十八页相关一致基函数一系列逐渐增大的基组,考虑了电子相关效应其径向和角度两方面的近似是相互一致的,可用它外推到基组极限cc-pVDZ DZ 且对非氢原子添加d函数,对氢原子添加p函数cc-pVTZ 价层三重分裂函数,且对非氢原子添加2个d函数和1个f函数,对氢原子添加2
8、个p函数和1个d函数cc-pVQZ,cc-pV5Z,cc-pV6Z还可以再添加弥散函数(aug-cc-pVXZ)本讲稿第二十二页,共四十八页相关一致基组(第二周期)(sp)组极化函数cc-pVDZ3s2p1dcc-pVTZ4s3p2d1fcc-pVQZ5s4p3d2f1g本讲稿第二十三页,共四十八页相关一致基组的精确度单Zeta双Zeta三Zeta极化函数Zeta数目1d2d1f3d2f1g6-31G*(中等基组)半经验基组0级1级2级1级2级3级近似等级本讲稿第二十四页,共四十八页赝势,有效势基组在化学作用中,内层轨道没有大的变化价层轨道同时受到核和内层电子的作用可以构造一个赝势,来代替来自
9、核和内层电子对价层电子的静电势可以用更少的基函数来描写原子(但是却引入了其它近似)对于重元素,赝势可以把难以处理的相对论效应给包括进去,改善了计算结果本讲稿第二十五页,共四十八页计算化学及其应用单电子性质One Electron Properties本讲稿第二十六页,共四十八页分子轨道的概念波函数的整体性:体系的电子是整体分布在整个空间的波函数的可分性:电子在整个能量区间或空间是有相对分布的按照能量划分,得到不同的分子轨道按分子轨道能量划分:按照空间划分,得到定域的分子轨道本讲稿第二十七页,共四十八页不同能量的分子轨道(离域)分子轨道是离域的,分布在整个分子上正交归一的可以在图形界面下画出三维
10、的分子轨道图,其中|i(r)|=ci(r)有正负值正负号只有相对的意义,没有绝对的意义本讲稿第二十八页,共四十八页定域分子轨道定域分子轨道形成一个正交归一函数集合,占据与非占据之间也正交仅仅分布在1到2个原子上,至多3个原子上可以与化学上的电子分布的直观概念联系起来:Lewis结构,杂化,成键(,p键)可以用于改进算法,因为它具有相当的可加性计算量不再随N4增加,而是相当线性地增加离域分子轨道和定域分子轨道可以通过一个酉变换联系起来本讲稿第二十九页,共四十八页NBO中的自然定域分子轨道乙烷的CH和*CH本讲稿第三十页,共四十八页原子电荷在化学家中,电子的转移和共享是最直接的化学成键图像电子转移
11、对应于原子电荷,共享对应于于共价键的键级在分子轨道理论中,没有原子的概念,每个电子是分布于整个分子体系中因此确定“分子中的原子”就是把分子轨道理论与化学直观联系起来的桥梁本讲稿第三十一页,共四十八页Mulliken集居数分析把总的电子密度分割到各个原子或基函数上每个轨道都是归一的 对于闭壳层分子,每个占据轨道上有2个电子(Ne 是电子总数)本讲稿第三十二页,共四十八页Mulliken集居数分析每个轨道是基函数的线性组合把它代入电子总数的表达式并且重新组合各项本讲稿第三十三页,共四十八页Mulliken集居数分析密度矩阵,Smn 重叠矩阵按照基函数所属的原子把 分配到不同原子上Mulliken集
12、居数分析矩阵集中在各个原子上原子电荷本讲稿第三十四页,共四十八页A-B间电子数:Mulliken键级各个原子上电子数Mulliken的PS矩阵本讲稿第三十五页,共四十八页Wiberg和和Mayer键级键级l共价键的键级可以定量地反映键的强弱lMulliken键级与我们的经验键级没有定量的关系lWiberg键级及其推广Mayer键级(PS)(PS)2lWiberg键级与经验键级基本一致,lMayer键级与经验键级完全一致l例如:H-H(1.0),C-H(0.99),C=C(2.01)l对不同基组有一定的稳定性l应用:近似估计原子之间共价键成份lGaussian03的NBO中可以输出Wiberg键
13、级本讲稿第三十六页,共四十八页分子中的原子轨道(AOIM)从分子轨道理论得到原子电荷和键级的关键的确定“分子中的原子”!分子中的原子类似与自由原子,因此其原子轨道应该是最小原子轨道,而不是计算必须使用的双Zeta或更高的基组相对于自由原子,分子中的原子的原子轨道要收缩(失去电子时)或膨胀(得到电子时),这由分子波函数来确定,并不是事先指定的这样得到的原子轨道称为分子中的原子轨道,把分子波函数用这种轨道投影出来,再进行Mulliken集居数分析本讲稿第三十七页,共四十八页AOIM对Mulliken分析的改进本讲稿第三十八页,共四十八页自然键轨道自然键轨道(NBO)分析分析http:/www.ch
14、em.wisc.edu/nbo5/l使用自然正交的轨道(一阶约化密度的本征轨道)进行轨道分析l自然轨道与原子轨道只是定性相似l因为正交,所以轨道之间没有重叠,与化学键性质不符l所得到的电荷比较稳定,与基组的关系不大l电荷,键型,杂化方向,共振成份等本讲稿第三十九页,共四十八页2s和2p自然原子轨道(乙烷,B3LYP/6-311+G*)本讲稿第四十页,共四十八页AIM(分子中的原子)方法电子密度与波函数不同,是一个可观测的真实量体系中电子密度在空间中的变化是有规律的电子密度函数在空间中的变化可以用其对空间坐标(x,y,z)的一阶和二阶微商来描写根据电子密度函数的微商把电子划分为不同的区域,归属于
15、相应区域的核本讲稿第四十一页,共四十八页电子密度(乙烯)电子密度的梯度按照电子密度梯度的零线划分电子密度给每个原子本讲稿第四十二页,共四十八页来自静电势的原子电荷(CHelpG)CHELPG(=CHarges from ELectrostatic Potentials using a Grid based method)原子电荷要拟合出分子周围一些点处的静电势,首先计算分子的静电势3pm取点按照分子大小再扩大28pm抛弃在范德华半径内的点对其它所有点进行拟合优化本讲稿第四十三页,共四十八页偶极矩对于 Hartree-Fock 波函数,偶极就是偶极经典表示的期望值它可以用密度矩阵和基函数的一组积
16、分来表示本讲稿第四十四页,共四十八页电子密度在rC处,一个单位电荷感受到的势能静电势本讲稿第四十五页,共四十八页电子总能量的表示本讲稿第四十六页,共四十八页Kopmanns定理和Brilliouin定理Kopmanns定理:本征值ek近似对应于第k个轨道的电离能的负值Brilliouin定理:Y0是体系的Slater行列式,Y0a是用一个虚轨道代替一个占据轨道后的行列式,那么:=0。用HF行列式函数Y0为零级近似基态波函数计算出的单电子算符的期望值精确到一级。(在Moller-Plesset展开下)本讲稿第四十七页,共四十八页电负性光谱电负性:Allen,1989电负性是原子价层电子的平均能量对主族元素:可以用理论方法计算,对于分子体系,可以使用AOIM方法进行计算本讲稿第四十八页,共四十八页