《2017优质课《2.3.1平面向量基本定理》教案(共4页).doc》由会员分享,可在线阅读,更多相关《2017优质课《2.3.1平面向量基本定理》教案(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上2.3.1平面向量基本定理教案参赛号:70一、教材分析本节课是在学习了共线向量定理的前提下,进一步研究平面内任一向量的表示,为今后平面向量的坐标运算打下坚实的基础。所以,本节在本章中起到承上启下的作用。平面向量基本定理揭示了平面向量之间的基本关系,是向量解决问题的理论基础。平面向量基本定理提供了一种重要的数学思想转化思想。二、教学目标知识与技能: 了解平面向量基本定理及其意义,学会利用平面向量基本定理解决问题,掌握基向量表示平面上的任一向量.过程与方法:通过学习平面向量基本定理,让学生体验数学的转化思想,培养学生发现问题的能力.情感态度与价值观:通过学习平面向量基本定
2、理,培养学生敢于实践的创新精神,在解决问题中培养学生的应用意识。教学重点:平面向量基本定理的探究;教学难点:如何有效实施对平面向量基本定理的探究过程.三、教学过程1、情景创设七个音符谱出千支乐曲,26个字母写就百态文章!在多样的向量中,我们能否找到它的基本音符呢?问题1 给定一个非零向量,允许做线性运算,你能写出多少个向量? 问题2 给定两个非零向量,允许做线性运算,写出尽量多的向量? 1、 通过线性运算会得到的形式,本质上它们表示的都是的数乘。2、 通过线性运算会得到,它表示的是什么向量? 不妨我们作出几个向量 , , , 来看看。只要给定和的值,我们就可以作出向量,本质上是的数乘和的数乘的
3、合成。随着和取值的变化,可以合成平面内无数多个向量。问题3 那么我们能否这样认为:平面上的任何一个向量都可以由和来合成呢?我们在平面上任取一个向量,看看它能否由和来合成,也就是能否找到这样的和,使?这个问题可简述为:平面上有两个不共线的向量和,平面上的任意一个向量能否用这两个向量来表示?思考探究: 根据探寻的目标,结合上面向量合成的做法,显然就应该是合成后的平行四边形的对角线,而平行四边形两边应该是和所在的直线,因此,只要作出这个平行四边形,问题就迎刃而解了。 如图所示,在平面内任取点O,作,. 作平行四边形ONCM. 则.由向量共线定理可得,存在唯一的实数,使;存在唯一的实数,使.即存在唯一
4、的实数对,使得=+. M C A O B N强调:向量的任意性、不共线、系数,的存在性与唯一性。2、定理剖析讨论探究:同学们能否总结出平面向量基本定理的内容?如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使=+这里我们发现平面内的任意两个不共线向量、就类似于音乐中的7个音符,类似于英文中的26个字母。我们把任意两个不共线的向量、叫做表示这一平面内所有向量的一组基底。定理说明:(1)什么样的两个向量可以作为平面内所有向量的一组基底? 不共线的两个向量(2)一个平面的基底是唯一的吗? 不唯一,可以有无数多个(3)当平面的基底给定时,任意向量的分解形式唯一的吗?
5、 由共线向量定理可知:,唯一确定3、例题分析例1 已知向量、,求作向量-2.5+3. 例2 如图平行四边形ABCD两条对角线相交于M,且,用表示向量.变式:在上述平行四边形中,若已知4、课堂检测1、已知向量、不共线,实数x、y满足(3x-4y) +(2x-3y) =6+3,则x-y的值等于( )A.3 B.-3 C.0 D.22、如图,已知梯形ABCD,AB/CD,且AB= 2DC,M,N分别是DC,AB的中点.记向量,试用,表示向量.5、课堂小结(1)平面向量基本定理;(2)该定理研究了向量哪方面的知识6、板书设计2.3.1平面向量基本定理问题引入平面向量基本定理定理说明例1, 例2变式训练小结7、作业专心-专注-专业