《弹性力学答案(共13页).doc》由会员分享,可在线阅读,更多相关《弹性力学答案(共13页).doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上【1-4】应力和面力的符号规定有什么区别?试画出正坐标面和负坐标面上的正的应力和正的面力的方向。【解答】应力的符号规定是:当作用面的外法线方向指向坐标轴方向时(即正面时),这个面上的应力(不论是正应力还是切应力)以沿坐标轴的正方向为正,沿坐标轴的负方向为负。当作用面的外法线指向坐标轴的负方向时(即负面时),该面上的应力以沿坐标轴的负方向为正,沿坐标轴的正方向为负。面力的符号规定是:当面力的指向沿坐标轴的正方向时为正,沿坐标轴的负方向为负。由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反。 正的应力正的面力【2-1】试分析说明,在不受任何面
2、力作用的空间体表面附近的薄层中(图2-14)其应力状态接近于平面应力的情况。【解答】在不受任何面力作用的空间表面附近的薄层中,可以认为在该薄层的上下表面都无面力,且在薄层内所有各点都有,只存在平面应力分量,且它们不沿z方向变化,仅为x,y的函数。可以认为此问题是平面应力问题。【2-2】试分析说明,在板面上处处受法向约束且不受切向面力作用的等厚度薄片中(2-15),当板边上只受x,y向的面力或约束,且不沿厚度变化时,其应变状态接近于平面应变的情况。【解答】板上处处受法向约束时,且不受切向面力作用,则(相应)板边上只受x,y向的面力或约束,所以仅存在,且不沿厚度变化,仅为x,y的函数,故其应变状态
3、接近于平面应变的情况。【2-3】在图2-3的微分体中,若将对形心的力矩平很条件改为对角点的力矩平衡条件,试问将导出什么形式的方程?【解答】将对形心的力矩平衡条件,改为分别对四个角点A、B、D、E的平衡条件,为计算方便,在z方向的尺寸取为单位1。 (a) (b) (c) (d)略去(a)、(b)、(c)、(d)中的三阶小量(亦即令都趋于0),并将各式都除以后合并同类项,分别得到。【分析】由本题可得出结论:微分体对任一点取力矩平衡得到的结果都是验证了切应力互等定理。【2-9】试列出图2-17,图2-18所示问题的全部边界条件。在其端部小边界上,应用圣维南原理列出三个积分的应力边界条件。图2-17
4、图2-18【分析】有约束的边界上可考虑采用位移边界条件,若为小边界也可写成圣维南原理的三个积分形式,大边界上应精确满足公式(2-15)。【解答】图2-17:上(y=0)左(x=0)右(x=b)0-11-100000代入公式(2-15)得在主要边界上x=0,x=b上精确满足应力边界条件:在小边界上,能精确满足下列应力边界条件:在小边界上,能精确满足下列位移边界条件:这两个位移边界条件可以应用圣维南原理,改用三个积分的应力边界条件来代替,当板厚时,可求得固定端约束反力分别为:由于为正面,故应力分量与面力分量同号,则有:图2-18上下主要边界y=-h/2,y=h/2上,应精确满足公式(2-15)(s
5、)(s)0-1001-0,在=0的小边界上,应用圣维南原理,列出三个积分的应力边界条件:负面上应力与面力符号相反,有在x=l的小边界上,可应用位移边界条件这两个位移边界条件也可改用三个积分的应力边界条件来代替。首先,求固定端约束反力,按面力正方向假设画反力,如图所示,列平衡方程求反力:由于x=l为正面,应力分量与面力分量同号,故【2-19】试证明,如果体力虽然不是常量,但却是有势的力,即体力分量可以表示为,其中V是势函数,则应力分量亦可用应力函数表示成为,试导出相应的相容方程。【解答】(1)将带入平衡微分方程(2-2) (a)将(a)式变换为 (b)为了满足式(b),可以取即(2)对体力、应力
6、分量求偏导数,得 (c)将(c)式代入公式(2-21)得平面应力情况下应力函数表示的相容方程 (2-21)整理得: (d)即平面应力问题中的相容方程为将(c)式代入公式(2-22)或将(d)式中的替换为,的平面应变情况下的相容方程: (e)即 。证毕。【3-4】试考察应力函数在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)? 【解答】相容条件:不论系数a取何值,应力函数总能满足应力函数表示的相容方程,式(2-25).求应力分量当体力不计时,将应力函数代入公式(2-24),得考察边界条件上下边界上应力分量均为零,故上下边界上无面力.左右边界上;当a>0时,考察分布情况,注意到,故
7、y向无面力左端: 右端: 应力分布如图所示,当时应用圣维南原理可以将分布的面力,等效为主矢,主矩A主矢的中心在矩下边界位置。即本题情况下,可解决各种偏心拉伸问题。偏心距e:因为在A点的应力为零。设板宽为b,集中荷载p的偏心距e:同理可知,当<0时,可以解决偏心压缩问题。专心-专注-专业【3-6】试考察应力函数,能满足相容方程,并求出应力分量(不计体力),画出图3-9所示矩形体边界上的面力分布(在小边界上画出面力的主矢量和主矩),指出该应力函数能解决的问题。【解答】(1)将应力函数代入相容方程(2-25),显然满足(2)将代入式(2-24),得应力分量表达式(3)由边界形状及应力分量反推边
8、界上的面力:在主要边界上(上下边界)上,应精确满足应力边界条件式(2-15),应力因此,在主要边界上,无任何面力,即在x=0,x=l的次要边界上,面力分别为:因此,各边界上的面力分布如图所示:在x=0,x=l的次要边界上,面力可写成主矢、主矩形式:x=0上 x=l上 因此,可以画出主要边界上的面力,和次要边界上面力的主矢与主矩,如图:(a) (b)因此,该应力函数可解决悬臂梁在自由端受集中力F作用的问题。【3-10】设单位厚度的悬臂梁在左端受到集中力和力矩作用,体力可以不计,(图3-12),试用应力函数求解应力分量。【解答】采用半逆解法求解(1)将应力函数代入相容方程(2-25),显然满足(2
9、)由应力函数求应力分量,代入公式(2-24) (a)(3)考察边界条件主要边界上,应精确满足应力边界条件, 满足 得 (b)在次要边界x=0上,应用圣维南原理,写出三个积分的应力边界条件 (c)联立方程(b)(c)得最后一个次要边界上,在平衡微分方程和上述边界条件均已满足的条件下是必然满足的,故不必在校核。将系数A、B、C、D代入公式(a),得应力分量【3-11】设图3-13中的三角形悬臂梁只受重力作用,而梁的密度为,试用纯三次式的应力函数求解。【解答】采用半逆解法求解(1) 检验应力函数是否满足相容方程(2-25)设应力函数,不论上式中的系数如何取值,纯三次式的应力函数总能满足相容方程(2-
10、25)(2) 由式(2-24)求应力分量由体力分量,将应力函数代入公式(2-24)得应力分量: (a) (b) (c)(3)考察边界条件:由应力边界条件确定待定系数。对于主要边界,其应力边界条件为:, (d)将式(d)代入式(b),(c),可得 (e)对于主要边界(斜面上),应力边界条件:在斜面上没有面力作用,即,该斜面外法线方向余弦为,.由公式(2-15),得应力边界条件 (f)将式(a)、(b)、(c)、(e)代入式(f),可解得 (g)将式(e)、(g)代入公式(a)、(b)、(c),得应力分量表达式:4-3在轴对称位移问题中,试导出按位移求解的基本方程。并证明,可以满足此基本方程。【解
11、】(1)设,代入几何方程中,教材中式(4-2)得形变分量 (a)将式(a)代入物理方程,教材中式(4-3)得用位移表示的应力分量 (b)将(b)式代入平衡微分方程,教材中式(4-1),在轴对称问题中,平衡方程为 (c)式(c)中的第二式自然满足,第一式为上式即为求的基本方程。(2) 将代入式(d),很显然满足方程。4-8试考察应力函数,能解决题4-8图所示弹性体的何种受力问题?【解】本题按逆解法求解。(1)相容条件把应力函数代入相容方程显然是满足的。(2)由应力函数求应力分量表达式求出边界上的面力面上,; 面上,;面力分布如解4-8图所示,因此上述应力函数可解决如图所示的受力问题。4-18 设
12、半面体在直边界上受有集中力偶,单位宽度上力偶矩为M,如题4-l8图所示,试求应力分量。【解】应用半逆解法求解。(1)按量纲分析方法,单位宽度上的力偶矩与力的量纲相同。应为应与有关,由于应力的量纲是单位面积上的力,即,应力只能以形势组合。(2)应比应力的长度量纲高二次幂,可假设。(3)将代入相容方程,得这是四阶常系数齐次微分方程,其特征方程为求解特征方程它的根是。因此,所给微分方程的通解为此处,所以。将系数修改为,有本题中结构对称于的x轴,而M是反对称荷载,因此,应力应反对称于x轴,为的奇函数,从而得A=D=O。(4)由应力函数得应力分量的表达式(5)考察边界条件。由于原点O有集中力偶作用,应分别考察大边界上的条件和原点附近的。在的边界上,有。前一式自然满足,而第二式成为2B=C。 (d)为了考虑原点O附近有集中力偶的作用,取出以0为中心,为半径的一小部分脱离体,并列出其平衡条件。上式中前两式自然满足,而第三式成为将各系数代人应力分量的表达式,得