《第五章 红外光谱PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《第五章 红外光谱PPT讲稿.ppt(73页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第五章第五章 红外光谱红外光谱第1页,共73页,编辑于2022年,星期三5.1 基本原理基本原理红红外外光光谱谱就就是是当当红红外外光光照照射射有有机机物物时时,用用仪仪器器记记录录下下来来的的吸吸收收情情况况(被被吸吸收收光光的的波波长长及及强强度度等等),用用来来进进行行分分析析的的方方法法。红红外外线线可分为三个区域:可分为三个区域:红外光谱法主要讨论有机物对中红区的吸收红外光谱法主要讨论有机物对中红区的吸收(振动能级跃迁)(振动能级跃迁)。第2页,共73页,编辑于2022年,星期三一、波长和波数一、波长和波数电磁波的波长(电磁波的波长()、频率()、频率(v)、能量()、能量(E)之间
2、的关系:)之间的关系:用不断改变波长的红外光照射样品,当某一波长的频率刚好与分子中某一化学键的振动频率相同时,分子就会吸收红外光,产生吸收峰。用波长()或波长的倒数波数(cm-1)为横坐标,百分透光率(T)或吸收度(A)为纵坐标做图,得到红外吸收光谱图(IR)。分子振动所需能量对应波数范围在400cm-14000cm-1。红外光谱的基本原理红外光谱的基本原理:第3页,共73页,编辑于2022年,星期三 红外光谱是研究波数在红外光谱是研究波数在4000-400cm4000-400cm-1-1范围内不同范围内不同波长的红外光通过化合物后被吸收的谱图。谱图以波波长的红外光通过化合物后被吸收的谱图。谱
3、图以波长或波数为横坐标,以透过率为纵坐标而形成。长或波数为横坐标,以透过率为纵坐标而形成。I:表示透过光的强度;:表示透过光的强度;I0:表示入射光的强度。:表示入射光的强度。二、红外光谱的表示方法二、红外光谱的表示方法透光度以下式表示:透光度以下式表示:纵坐标:吸光度纵坐标:吸光度A或透过率或透过率T,A越大或越大或T越小,吸收峰强度越大。越小,吸收峰强度越大。横坐标:波长横坐标:波长/或波数或波数/cm-1。第4页,共73页,编辑于2022年,星期三 横坐标:波数(横坐标:波数()4004000 cm-1;表示吸收峰的位置。;表示吸收峰的位置。纵坐标:透过率(纵坐标:透过率(T%),表示吸
4、收强度。),表示吸收强度。T,表明吸收的越,表明吸收的越好,故曲线低谷表示是一个好的吸收带。好,故曲线低谷表示是一个好的吸收带。第5页,共73页,编辑于2022年,星期三对于吸收峰强度或形状,常用下列符号表示:对于吸收峰强度或形状,常用下列符号表示:三、分子振动与红外光谱三、分子振动与红外光谱 分子中的一个化学键可有几种不同的振动形式,而产生不同的红外吸收峰,键的振动分为两大类。伸缩振动,用伸缩振动,用表示,原子间沿键轴方向伸长或缩短。表示,原子间沿键轴方向伸长或缩短。弯曲振动用弯曲振动用表示,形成化学键的两个原子之一与键轴垂直方向作表示,形成化学键的两个原子之一与键轴垂直方向作上下或左右弯曲
5、。上下或左右弯曲。组成化学键的原子的质量越小,键能越高,键长越短,振动所需能量越组成化学键的原子的质量越小,键能越高,键长越短,振动所需能量越大,吸收峰所在的波数就越高。大,吸收峰所在的波数就越高。第6页,共73页,编辑于2022年,星期三1.分子的振动方式分子的振动方式表示方法:表示方法:(1)伸缩振动:伸缩振动:第7页,共73页,编辑于2022年,星期三(2)弯曲振动:弯曲振动:值得注意的是值得注意的是:不是所有的振动都能引起红外吸收,不是所有的振动都能引起红外吸收,只有偶极矩只有偶极矩()发生变化的,才能有红外吸收。发生变化的,才能有红外吸收。H2、O2、N2 电荷分布均匀,振动不能引起
6、红外吸收。电荷分布均匀,振动不能引起红外吸收。HCCHH、RRCCRR,其,其CC(三键)振动也不能引起红外吸收。(三键)振动也不能引起红外吸收。第8页,共73页,编辑于2022年,星期三 2.振动方程式(振动方程式(Hooke定律)定律)式式中中:k 化化学学键键的的力力常常数数,单单位位为为N.cm-1;折折合合质量,单位为质量,单位为 g。力常数力常数k:与与键长键长、键能键能有关:键能有关:键能(大),键长(大),键长(短短),k k。化学化学键键键长键长(nm)键能键能(KJ mol-1)力常数力常数 k(N.cm-1)波数范围波数范围 (cm-1)CC0.154347.34.570
7、01200CC0.134610.99.616201680CC0.116836.815.621002600 一些常见化学键的力常数如下表所示:一些常见化学键的力常数如下表所示:第9页,共73页,编辑于2022年,星期三 折合质量折合质量:两振动原子只要有一个的质量两振动原子只要有一个的质量,(),红红外吸收外吸收信号信号将出将出现现在高波数区。在高波数区。3.分子的振动能级跃迁和红外吸收峰位分子的振动能级跃迁和红外吸收峰位 分子的振动是量子化的,其能级为:分子的振动是量子化的,其能级为:式中:式中:v 为振动量子数为振动量子数(0,1,2,);振振为化学键的振动频率。为化学键的振动频率。第10页
8、,共73页,编辑于2022年,星期三 分子由基态分子由基态v=0 跃迁到激发态跃迁到激发态v=1 时,吸收光的能量为:时,吸收光的能量为:分子振动频率习惯以分子振动频率习惯以(波数)表示:(波数)表示:由此可见:由此可见:()k k,()与)与成反比。成反比。吸收峰的峰位:化学键的力常数吸收峰的峰位:化学键的力常数k k 越大,越大,原子的原子的折合折合质量越质量越小,小,振动频率越大,振动频率越大,吸收峰将出现在高波数区吸收峰将出现在高波数区(短波长区);(短波长区);反之,反之,出现在低波数区出现在低波数区(高波长区)。(高波长区)。第11页,共73页,编辑于2022年,星期三产生红外光谱
9、的必要条件是:产生红外光谱的必要条件是:1)红外辐射光的频率与分子振动的频率相当红外辐射光的频率与分子振动的频率相当,才能满足分,才能满足分子振动能级跃迁所需的能量,而产生吸收光谱。子振动能级跃迁所需的能量,而产生吸收光谱。2)振动过程中必须是能引起振动过程中必须是能引起分子偶极矩变化分子偶极矩变化的分子才能产生的分子才能产生红外吸收光谱。红外吸收光谱。4.4.有机化合物基团的特征频率有机化合物基团的特征频率 总结大量红外光谱资料后,发现总结大量红外光谱资料后,发现具有同一类型化学键或官能团的不同具有同一类型化学键或官能团的不同化合物,其红外吸收频率总是出现在化合物,其红外吸收频率总是出现在一
10、定一定的波数范围内,我们把的波数范围内,我们把这种能这种能代表某基团,并有较高强度的吸收峰,称为该基团的特征吸收峰(又代表某基团,并有较高强度的吸收峰,称为该基团的特征吸收峰(又称官能团吸收峰)。称官能团吸收峰)。第12页,共73页,编辑于2022年,星期三 1).特征频率区:特征频率区:在在16003700 cm-1区域(称为:高频区)出现的吸区域(称为:高频区)出现的吸收峰,较为稀疏,收峰,较为稀疏,容易辨认,主要有:容易辨认,主要有:(1)YH 伸缩振动区:伸缩振动区:25003700 cm-1,Y=O、N、C。(2)YZ 三键和累积双键伸缩振动区:三键和累积双键伸缩振动区:210024
11、00 cm-1,主要是:主要是:CCC、CN CN 三键和三键和 C CC CC C、C CN NO O 等累积双键的伸缩振动吸收峰。等累积双键的伸缩振动吸收峰。(3)(3)Y YZ Z双键伸缩振动区:双键伸缩振动区:16001800 cm-1,主要是:主要是:C CO O、C CN N、C CC C等双等双键存在。键存在。第13页,共73页,编辑于2022年,星期三2 2)指纹区:)指纹区:1600 cm-1的低频区,的低频区,主要是:主要是:CC C、C CN N、C CO O等单键和各种弯曲振等单键和各种弯曲振动动的吸收峰,的吸收峰,其特点是其特点是谱带谱带密集、密集、难难以辨以辨认认。
12、3 3)倍频区:)倍频区:3700 cm-1的区域,的区域,出现的吸收峰表示基团的基本出现的吸收峰表示基团的基本 频率,而是一些基团的倍频率,其频率,而是一些基团的倍频率,其数值略低于基本频率数值略低于基本频率的倍数。的倍数。第14页,共73页,编辑于2022年,星期三5、峰的数目与振动自由度峰的数目与振动自由度 从理论上讲,每个振动自由度将产生一个IR吸收峰。对一个线状分子,其峰的数目3N5;对一个非线状分子,其峰的数目3N6。N为分子中成键原子的个数。例例1:为非线状分子,应有3N6963个峰。第15页,共73页,编辑于2022年,星期三例例2:OCO为线状分子,便有3N5954个峰。Wh
13、y?s 不改变分子的偶极矩;s 与w 简并。第16页,共73页,编辑于2022年,星期三 大多数情况下,实际吸收峰的数目少于计算值。其原因为:大多数情况下,实际吸收峰的数目少于计算值。其原因为:吸收峰的位置不在中红区(4004000cm-1);吸收峰太弱;振动时不改变分子的偶极矩;振动能级简并;(如下CO2中的667cm-1)强而宽的峰掩盖其附近弱峰。第17页,共73页,编辑于2022年,星期三有时,峰的数目大于计算值,其原因是:有时,峰的数目大于计算值,其原因是:泛频基频:基态第一激发态的跃迁;倍频:基态第二或第三激发态的跃迁;合频:12差频:12倍频、合频、差频统称为泛频。在IR光谱中,绝
14、大多数吸收峰都是基频,泛频出现的机率很小,而且往往很弱。泛频吸收适合于有机物的定量分析。偶合:吸收频率相近的峰之间相互作用。费米共振:泛频位于强吸收(基频)附近,二者相互作用,使泛频强度明显增加或发生裂分。第18页,共73页,编辑于2022年,星期三5.2 各类有机化合物的红外特征吸收各类有机化合物的红外特征吸收40001300cm-1:官能团区,用于官能团鉴定;该该区区域域出出现现的的吸收峰,较为稀疏,容易辨认吸收峰,较为稀疏,容易辨认.1300650cm-1:指纹区,用于鉴别两化合物是否相同。这一区域这一区域主要是:主要是:CC、CN、CO 等单键和各种弯曲振动的吸收峰,等单键和各种弯曲振
15、动的吸收峰,其特点是谱带密集、难以辨认。其特点是谱带密集、难以辨认。官能团区官能团区吸收峰大多由成键原子的伸缩振动而产生,与整个分子的关系不大,不同化合物中相同官能团的出峰位置相对固定,可用于确定分子中含有哪些官能团。红外谱图一般以红外谱图一般以1300cm-1为界:为界:指纹区指纹区吸收峰大多与整个分子的结构密切相关,不同分子的指纹区吸收不同,象不同的人有不同的指纹,可鉴别两个化合物是否相同。指纹区内的吸收峰不可能一一指认。第19页,共73页,编辑于2022年,星期三例例1:若分子中存在COOH,则其IR谱图应出现下列一组相关峰:例例2:若分子中存在CONH,则其IR谱图应出现下列一组相关峰
16、:相关峰相关峰由于某个官能团的存在而出现的一组相互依存、相互佐证的吸收峰。第20页,共73页,编辑于2022年,星期三八个最重要和比较确定的区域:八个最重要和比较确定的区域:用一组相关峰确定一个官能团的存在是用一组相关峰确定一个官能团的存在是IR光谱解析的一条光谱解析的一条重要原则!重要原则!第21页,共73页,编辑于2022年,星期三一、第一峰区(一、第一峰区(40002500cm-1)XH 伸缩振动吸收范围。伸缩振动吸收范围。X代表代表O、N、C、S,对应醇、酚、,对应醇、酚、羧酸、胺、亚胺、炔烃、烯烃、芳烃及饱和烃类的羧酸、胺、亚胺、炔烃、烯烃、芳烃及饱和烃类的 OH、NH、CH 伸缩振
17、动。伸缩振动。1.OH 醇与酚:游离态的醇与酚:游离态的vOH36403610cm-1,峰形尖锐;,峰形尖锐;氢氢键键缔合的缔合的vOH3300cm-1附近,峰形宽而钝。附近,峰形宽而钝。羧酸:羧酸:33002500cm-1,中心约,中心约3000cm-1,谱带宽,谱带宽,胖峰或漫坡;而在胖峰或漫坡;而在3500 cm-1附近无吸收。附近无吸收。原因:羧酸中的羟氢常以二聚体形式存在,即使在极稀溶液中也原因:羧酸中的羟氢常以二聚体形式存在,即使在极稀溶液中也有二聚体形式存在。有二聚体形式存在。2.NH第22页,共73页,编辑于2022年,星期三 胺类:胺类:游离游离35003300cm-1 缔合
18、缔合吸收位置降低约吸收位置降低约100cm-1 伯胺:伯胺:3500 3400cm-1,吸收强度比羟基弱,吸收强度比羟基弱,双峰;双峰;仲胺:仲胺:3400cm-1,吸收峰比羟基要尖锐,吸收峰比羟基要尖锐,单峰;单峰;叔胺:无吸收。叔胺:无吸收。酰胺:酰胺:伯酰胺:伯酰胺:3350 3150cm-1 附近出现双峰;附近出现双峰;仲酰胺:仲酰胺:3200cm-1 附近出现一条谱带;附近出现一条谱带;叔酰胺:无吸收。叔酰胺:无吸收。各种胺盐(各种胺盐(NH3、NH2、NH)的)的 NH在在30002250 cm-1出峰,出峰,峰形较胖,季铵盐无峰形较胖,季铵盐无 NH 。原因:原因:NH中中NH的
19、力常数的力常数。第23页,共73页,编辑于2022年,星期三 烃类:烃类:33002700 cm-1范围,范围,3000 cm-1是分界线。是分界线。不饱和碳(三键、双键及苯环)不饱和碳(三键、双键及苯环)3000 cm-1 饱和碳(除三元环外)饱和碳(除三元环外)3000 cm-1 炔烃:炔烃:3300 cm-1,峰很尖锐;,峰很尖锐;烯烃、芳烃:烯烃、芳烃:31003000 cm-1 饱和烃基:饱和烃基:30002700 cm-1,四个峰,四个峰,CH3:2960(s)、)、2870 cm-1(m)CH2:2925(s)、)、2850 cm-1(s)CH:2890 cm-13.CH醛基:醛
20、基:28502720 cm-1,两个吸收峰;,两个吸收峰;巯基:巯基:26002500 cm-1,谱带尖锐,容易识别。,谱带尖锐,容易识别。第24页,共73页,编辑于2022年,星期三讨论:讨论:(1)3000cm-1以上有峰是不饱和氢和芳氢的吸收;3000cm-1以下有峰是脂肪族饱和氢的吸收;(2)因大多数有机物中都含有CH3、CH2,CH(饱和)特征性不强。(3)CH(醛)2720cm-1特征性很强,是CHO存在的依据之一。2720cm-1峰是费米共振的典型实例:第25页,共73页,编辑于2022年,星期三例例:C6H5CCH(A)、C6H5CHCH2(B)、C6H5CH2CH3(C)、C
21、6H13CH3(D)的部分IR谱图如下,试判断每个图的归属。(C)(A)(B)(D)第26页,共73页,编辑于2022年,星期三二、第二峰区(二、第二峰区(25002000 cm-1)叁键、累积双键(叁键、累积双键(CC、CN、CCC、NCO、NCS)伸缩振动吸收区。伸缩振动吸收区。谱带为中等强度吸收或弱吸收。谱带为中等强度吸收或弱吸收。干扰少,容易识别。干扰少,容易识别。注意:共轭使注意:共轭使 CC、CN 波数降低。波数降低。1.CC 22802100cm-1,乙炔及全对称双取代炔在红外光谱中观测不到。乙炔及全对称双取代炔在红外光谱中观测不到。2.CN 22502240cm-1,谱带较谱带
22、较 CC 强。强。CN 与苯环或双键共轭,谱带与苯环或双键共轭,谱带向低波数位移向低波数位移 2260-2240cm-1。第27页,共73页,编辑于2022年,星期三例例:样品结构为(I)、(II)或(III)的IR谱图如下,问:哪个结构与谱图一致?为什么?解解:3300cm-1(CCH)有峰,只有(II)符合;1900-1650 cm-1(CO)无峰,样品不含羰基。排除(I)、(III)。样品可能是(II)。2200cm-1:CC;1640cm-1:CC;2940、2800cm-1:CH 第28页,共73页,编辑于2022年,星期三三、三、第三峰区(第三峰区(20001500cm-1)双键的
23、伸缩振动区:包括双键的伸缩振动区:包括CO、CC、CN、NO。1.CO 19001650cm-1,峰尖锐或稍宽,其强度都较大。,峰尖锐或稍宽,其强度都较大。羰基的吸收一般为最强峰或次强峰。羰基的吸收一般为最强峰或次强峰。变化规律:变化规律:第29页,共73页,编辑于2022年,星期三 酰卤:酰卤:吸收位于最高波数端,特征,无干扰。吸收位于最高波数端,特征,无干扰。酸酐:酸酐:两个羰基振动偶合产生双峰,波长位移两个羰基振动偶合产生双峰,波长位移6080 cm-1。酯:酯:脂肪酯脂肪酯1735 cm-1 不饱和酸酯或苯甲酸酯低波数位移约不饱和酸酯或苯甲酸酯低波数位移约20 cm-1 羧酸:羧酸:1
24、720 cm-1 若在第一区约若在第一区约 3000 cm-1出现强、宽吸收,可确认羧基存在。出现强、宽吸收,可确认羧基存在。第30页,共73页,编辑于2022年,星期三 醛:在醛:在28502720 cm-1 范围有范围有 m 或或 w 吸收,出现吸收,出现12 条谱带,结合此峰,可判断醛基存在。条谱带,结合此峰,可判断醛基存在。酮:唯一的特征吸收带酮:唯一的特征吸收带酰胺:酰胺:16901630 cm-1,缔合态约,缔合态约 1650 cm-1 伯酰胺:伯酰胺:1690 cm-1(),1640 cm-1()仲酰胺:仲酰胺:1680 cm-1(),),1530 cm-1(),),1260 c
25、m-1()叔酰胺:叔酰胺:1650 cm-1 2.CC 16701600 cm-1,强度中等或较低。,强度中等或较低。第31页,共73页,编辑于2022年,星期三 烯烃:烯烃:16801610 cm-1芳环骨架振动:芳环骨架振动:苯环、吡啶环及其它苯环、吡啶环及其它芳环芳环16501450 cm-1 范围范围 苯:苯:1600,1580,1500,1450 cm-1 吡啶:吡啶:1600,1570,1500,1435 cm-1 呋喃:呋喃:1600,1500,1400 cm-1 喹啉:喹啉:1620,1596,1571,1470 cm-1 硝基、亚硝基化合物:强吸收硝基、亚硝基化合物:强吸收
26、脂肪族:脂肪族:15801540 cm-1,13801340 cm-1 芳香族:芳香族:15501500 cm-1,13601290 cm-1 亚硝基:亚硝基:16001500 cm-1 胺类化合物:胺类化合物:NH2 位于位于16401560 cm-1。第32页,共73页,编辑于2022年,星期三四、第四峰区(四、第四峰区(1500600 cm-1)指纹区:指纹区:XC(XH)键的伸缩振动及各类弯曲振动。)键的伸缩振动及各类弯曲振动。1.CH 弯曲振动弯曲振动烷烃:烷烃:CH3 约约1450 cm-1、1380 cm-1 CH(CH3)2 1380 cm-1、1370 cm-1 C(CH3)
27、3 1390 cm-1、1370cm-1 CH 1340 cm-1(不特征)(不特征)烯烃:烯烃:面内:面内:14201300 cm-1,不特征。,不特征。面外:面外:1000670 cm-1,容易识别,可判断取代情况。,容易识别,可判断取代情况。第33页,共73页,编辑于2022年,星期三芳环:芳环:面内:面内:1250950 cm-1范围,应用价值小。范围,应用价值小。面外:面外:910650 cm-1,可判断取代基的相对位置。,可判断取代基的相对位置。苯苯910670 cm-1 一取代一取代770730 cm-1,710690 cm-1 二取代二取代-邻:邻:770735 cm-1 对:
28、对:860800 cm-1 间:间:900800 cm-1,810750 cm-1,725680 cm-1。2.CO 伸缩振动伸缩振动 13001000 cm-1 第34页,共73页,编辑于2022年,星期三 醇、酚:醇、酚:12501000 cm-1,强吸收带;,强吸收带;酚:酚:1200 cm-1 伯醇:伯醇:1050 cm-1 仲醇:仲醇:1100 cm-1 叔醇:叔醇:1150 cm-1 醚:醚:COC伸缩振动位于伸缩振动位于 12501050 cm-1,确定醚类存在的,确定醚类存在的唯一谱带。唯一谱带。酯:酯:COC 伸缩振动位于伸缩振动位于13001050 cm-1,2 条谱带,强
29、吸收;条谱带,强吸收;酸酐:酸酐:COC 伸缩振动吸收带位于伸缩振动吸收带位于 13001050 cm-1,强而宽。强而宽。第35页,共73页,编辑于2022年,星期三 3.其它键的振动其它键的振动 NO2:对称伸缩振动位于:对称伸缩振动位于14001300 cm-1 脂肪族:脂肪族:13801340 cm-1 芳香族:芳香族:13601284 cm-1 COOH、COO:约约1420 cm-1,13001200 cm-1,两条强吸收带;两条强吸收带;NH2:面内:面内:16501500 cm-1 面外:面外:900650 cm-1【CH2】n :13501192 cm-1(间隔约(间隔约 2
30、0 cm-1)的谱带,)的谱带,800700 cm-1,弱吸收带。,弱吸收带。第36页,共73页,编辑于2022年,星期三 红外光谱的八个峰区红外光谱的八个峰区第37页,共73页,编辑于2022年,星期三重要官能团的红外特征吸收重要官能团的红外特征吸收振振动动吸收吸收峰峰化合物化合物C-H拉伸(或伸缩)拉伸(或伸缩)C-H弯曲弯曲烷烃烷烃2960-2850cm-1-CH2-,1460cm-1 -CH3,1380cm-1 异丙基,两个等强度的峰异丙基,两个等强度的峰三级丁基,两个不等强度的峰。三级丁基,两个不等强度的峰。第38页,共73页,编辑于2022年,星期三振振动动吸收峰吸收峰化合物化合物
31、C-H拉伸(或拉伸(或伸缩)伸缩)C=C,C C,C=C-C=C苯苯环环(拉伸或伸缩拉伸或伸缩)C-H弯曲弯曲烯烃烯烃1680-16201000-800 RCH=CH2 1645(中)(中)R2C=CH2 1653(中)(中)顺顺RCH=CHR 1650(中)(中)反反RCH=CHR 1675(弱)(弱)3000(中)(中)3100-3010三取代三取代 1680(中(中-弱)弱)四取代四取代 1670(弱(弱-无)无)四取代四取代 无无共轭烯烃共轭烯烃与烯烃同与烯烃同向低波数位移,变宽向低波数位移,变宽与烯烃同与烯烃同910-905强强995-985强强895-885强强730-650弱且宽
32、弱且宽980-965强强840-790强强无无强强第39页,共73页,编辑于2022年,星期三吸收峰吸收峰化合物化合物振振动动C-H拉伸拉伸(或伸缩)(或伸缩)C=C,C C,C=C-C=C苯环苯环C-H弯曲弯曲炔烃炔烃3310-3300一取代一取代 2140-2100弱弱非对称二取代非对称二取代2260-2190弱弱700-6003110-3010中中1600中中670弱弱倍频倍频 2000-1650邻邻-770-735强强间间-810-750强强 710-690中中对对-833-810强强泛频泛频 2000-1660取代芳烃取代芳烃较强较强对称对称 无无强强同芳烃同芳烃同芳烃同芳烃1580
33、弱弱1500强强1450弱弱-无无一取代一取代770-730,710-690强强二取代二取代芳烃芳烃第40页,共73页,编辑于2022年,星期三类类 别别拉拉 伸伸说说 明明R-XC-F C-Cl C-Br C-I1350-1100强强750-700 中中 700-500 中中 610-685 中中游离游离 3650-3500缔合缔合3400-3200宽峰宽峰不明显不明显醇、酚、醚醇、酚、醚-OHC-O1200-1000不特征不特征胺胺RNH2R2NH3500-3400(游离)缔合降低(游离)缔合降低1003500-3300(游离)缔合降低(游离)缔合降低100键和官能团键和官能团第41页,共
34、73页,编辑于2022年,星期三类别类别拉拉 伸伸 (cm-1)说说 明明1770-1750(缔合时在(缔合时在1710)醛、酮醛、酮C=OR-CHO1750-16802720羧酸羧酸C=OOH酸酐酸酐酰卤酰卤酰胺酰胺腈腈气相在气相在3550,液固缔合时在,液固缔合时在3000-2500(宽峰)(宽峰)C=OC=OC=OC=O酯酯18001860-1800 1800-17501735NH21690-16503520,3380(游离)缔合降低(游离)缔合降低100C N2260-2210键和官能团键和官能团第42页,共73页,编辑于2022年,星期三5.3 影响峰位置变化的因素影响峰位置变化的因
35、素 分子内基团的红外吸收会受到邻近基团及整个分子其他部分分子内基团的红外吸收会受到邻近基团及整个分子其他部分的影响的影响,也会因测定条件及样品的物理状态而改变,所以同一基团也会因测定条件及样品的物理状态而改变,所以同一基团的特征吸收会在一定范围内波动。的特征吸收会在一定范围内波动。第43页,共73页,编辑于2022年,星期三1.成键轨道类型成键轨道类型 例如例如:2.诱导效应诱导效应:由于邻近原子或基团的诱导效应的影响使基由于邻近原子或基团的诱导效应的影响使基团团 中电荷分布发生变化中电荷分布发生变化,从而改变了键的力常数从而改变了键的力常数,使振动频使振动频率发生变化率发生变化.例如例如:第
36、44页,共73页,编辑于2022年,星期三3.共轭效应共轭效应 由于邻近原子或基团的由于邻近原子或基团的共轭效应使原来基团中共轭效应使原来基团中双键性质从而减弱双键性质从而减弱,使力常数减小使力常数减小,使吸收频率降低。使吸收频率降低。例如例如:4.键张力的影响键张力的影响 主要是环状化合物环的大小不同影响键的力常数主要是环状化合物环的大小不同影响键的力常数,使环内使环内或环上基团的振动频率发生变化或环上基团的振动频率发生变化.具体变化在不同体系也有不具体变化在不同体系也有不同。同。第45页,共73页,编辑于2022年,星期三例如例如:环丙烷的环丙烷的C-H伸缩频率在伸缩频率在3030 cm-
37、1,而开链烷烃的而开链烷烃的C-H伸缩频率在伸缩频率在3000 cm-1以下。以下。5.氢键的影响氢键的影响 形成氢键后基团的伸缩频率都会下降。例如:乙醇形成氢键后基团的伸缩频率都会下降。例如:乙醇的自由羟基的伸缩振动频率是的自由羟基的伸缩振动频率是3640 cm-1,而其缔合物,而其缔合物的振动频率是的振动频率是3350 cm-1。形成氢键还使伸缩振动谱。形成氢键还使伸缩振动谱带变宽。带变宽。第46页,共73页,编辑于2022年,星期三6.振动的耦合振动的耦合 若分子内的两个基团位置很近,振动频率也相近,就可能若分子内的两个基团位置很近,振动频率也相近,就可能发生振动耦合,使谱带分成两个,在
38、原谱带高频和低频一侧各发生振动耦合,使谱带分成两个,在原谱带高频和低频一侧各出现一个谱带。例如乙酸酐的两个羰基间隔一个氧原子,它们出现一个谱带。例如乙酸酐的两个羰基间隔一个氧原子,它们发生耦合。羰基的频率分裂为发生耦合。羰基的频率分裂为1818和和1750 cm-1。(预期如果没预期如果没有耦合其羰基振动将出现在约有耦合其羰基振动将出现在约1760 cm-1)。弯曲振动也能发生耦合。弯曲振动也能发生耦合。7.物态变化的影响物态变化的影响 通常同种物质气态的特征频率较高,液态和固态较低。通常同种物质气态的特征频率较高,液态和固态较低。例如丙酮例如丙酮vC=O(气气)1738 cm-1,vC=O(
39、液液)1715 cm-1。溶。溶剂也会影响吸收频率。剂也会影响吸收频率。第47页,共73页,编辑于2022年,星期三5.4 5.4 红外谱图解析红外谱图解析及应用及应用1.计算不饱和度计算不饱和度2.官能团的确定官能团的确定(1500 cm-1)3.指纹区确定细节(指纹区确定细节(1500600 cm-1)4.核磁共振(核磁共振(H质子)质子)5.综合以上分析提出化合物的可能结构综合以上分析提出化合物的可能结构5.4.1 红外谱图解析的红外谱图解析的基本步骤基本步骤:(一)鉴定已知化合物(一)鉴定已知化合物:1.观察特征频率区:观察特征频率区:判断官能团,以确定所属化合物判断官能团,以确定所属
40、化合物 的类的类型。型。第48页,共73页,编辑于2022年,星期三 2.观察指纹区:观察指纹区:进一步确定基团的结合方式。进一步确定基团的结合方式。3.对照标准谱图对照标准谱图验证。验证。(二)测定未知化合物(二)测定未知化合物:1.1.准备性工作:准备性工作:了解试样的了解试样的来源、纯度、熔点、沸点来源、纯度、熔点、沸点等;等;2.2.经元素分析经元素分析确定实验式确定实验式;3.3.有条件时可有有条件时可有MS谱测定相对分子量,确定分子式;谱测定相对分子量,确定分子式;4.4.根据分子式根据分子式计算不饱和度;计算不饱和度;5.5.按鉴定已知化合物的程序解析谱图。按鉴定已知化合物的程序
41、解析谱图。谱图解析示例:谱图解析示例:第49页,共73页,编辑于2022年,星期三 1.1.烷烃:烷烃:1.28532962cm-1 CH 伸缩振动;伸缩振动;2.1460cm-1、1380cm-1 CH(CH3、CH2)面内弯曲振动)面内弯曲振动 3.723cm-1 CH(CH2)n,n 4 4平面摇摆振动;若平面摇摆振动;若n4 吸吸 收峰将出现在收峰将出现在734734743cm743cm-1-1处。处。第50页,共73页,编辑于2022年,星期三 2.烯烃烯烃 1.3030cm-1=CH伸缩振动;伸缩振动;2.CH 伸缩振动;伸缩振动;3.1625cm-1 CC伸缩振动;伸缩振动;4.
42、CH(CH3、CH2)面内弯曲振动;面内弯曲振动;第51页,共73页,编辑于2022年,星期三 3.醇醇 第52页,共73页,编辑于2022年,星期三三者的异同点:三者的异同点:1.缔合缔合O OH H的伸缩振动吸收峰:的伸缩振动吸收峰:均出现在均出现在3350cm-1处左右,差距不大。处左右,差距不大。2.CO键的伸缩振动吸收峰有明显的差异:键的伸缩振动吸收峰有明显的差异:伯醇:伯醇:10501085cm-1;仲醇:仲醇:11001125cm-1;叔醇:叔醇:11501120cm-1。4.醛与酮醛与酮 第53页,共73页,编辑于2022年,星期三二者的异同点:二者的异同点:第54页,共73页
43、,编辑于2022年,星期三 1.在在1700cm-1处均有一个强而尖的吸收峰,为处均有一个强而尖的吸收峰,为 CO(羰基羰基)的特征吸收峰。的特征吸收峰。2.醛基在醛基在2715cm-1处有一个强度中等的尖峰,这是鉴处有一个强度中等的尖峰,这是鉴别分子中是否存在别分子中是否存在 CHO的特征基团。的特征基团。3.CO(羰基)吸收峰的位置与其邻近基团有关,若(羰基)吸收峰的位置与其邻近基团有关,若羰基与双键共轭,吸收羰基与双键共轭,吸收峰将向低波数区位移。峰将向低波数区位移。第55页,共73页,编辑于2022年,星期三 1.OH 伸缩振动吸收峰:二聚体伸缩振动吸收峰:二聚体30002500cm-
44、1;2.CH 伸缩振动吸收峰:伸缩振动吸收峰:28532962cm-1 3.CO 伸缩振动吸收峰:伸缩振动吸收峰:17251700cm-1(脂肪族(脂肪族 羧酸),羧酸),17001680cm-1(芳香族羧酸)。(芳香族羧酸)。5.羧酸及其衍生物羧酸及其衍生物 123第56页,共73页,编辑于2022年,星期三 1.CO伸缩振动:在伸缩振动:在18501780 cm-1、17901740 cm-1两处同时出现。两处同时出现。2.COC伸缩振动:伸缩振动:13001050cm-1(强吸收)。(强吸收)。第57页,共73页,编辑于2022年,星期三5.4.2 红外谱解析要点及注意事项红外谱解析要点
45、及注意事项1.红外吸收谱的三要素(位置、强度、峰形);红外吸收谱的三要素(位置、强度、峰形);2.同一基团的几种振动的相关峰是同时存在的;同一基团的几种振动的相关峰是同时存在的;3.红外谱图解析顺序;红外谱图解析顺序;4.标准红外谱图的应用。标准红外谱图的应用。5.4.3 红外光谱解析实例:红外光谱解析实例:例一:例一:未知物分子式为未知物分子式为C8H16,其红外图谱如下图所其红外图谱如下图所 示,试示,试推其结构。推其结构。第58页,共73页,编辑于2022年,星期三第59页,共73页,编辑于2022年,星期三 解:由其分子式可计算出该化合物不饱和度为解:由其分子式可计算出该化合物不饱和度
46、为1,即该化合物具,即该化合物具有一个烯基或一个环。有一个烯基或一个环。3079cm-1处有吸收峰,说明存在与不饱和碳相连的氢,因此处有吸收峰,说明存在与不饱和碳相连的氢,因此该化合物肯定为烯,在该化合物肯定为烯,在1642cm-1处还有处还有C=C伸缩振动吸收,更伸缩振动吸收,更进一步证实了烯基的存在。进一步证实了烯基的存在。910、993cm-1处的处的C-H弯曲振动吸收说明该化合物有端乙烯弯曲振动吸收说明该化合物有端乙烯基,基,1823cm-1的吸收是的吸收是910吸收的倍频。吸收的倍频。从从2928、1462cm-1的较强吸收及的较强吸收及2951、1379cm-1的较弱吸收的较弱吸收
47、知未知物知未知物CH2多,多,CH3少。少。综上可知,未知物(主体)为正构端取代乙烯,即综上可知,未知物(主体)为正构端取代乙烯,即1-辛烯。辛烯。第60页,共73页,编辑于2022年,星期三例二:未知物分子式为例二:未知物分子式为C3H6O,其红外图如下图所示,其红外图如下图所示,试推其结构。试推其结构。1.由其分子式可计算出该化合物不饱和度为由其分子式可计算出该化合物不饱和度为1。第61页,共73页,编辑于2022年,星期三2.以以3084、3014、1647、993、919cm-1等处的吸收峰,等处的吸收峰,可判断出该化合物具有端取代乙烯。可判断出该化合物具有端取代乙烯。3.因分子式含氧
48、,在因分子式含氧,在3338cm-1处又有吸收强、峰形圆处又有吸收强、峰形圆而钝的谱带。因此该未知化合物必为醇类化合物。而钝的谱带。因此该未知化合物必为醇类化合物。再结合再结合1028cm-1的吸收,知其为伯醇。的吸收,知其为伯醇。综合上述信息,未知物结构为:综合上述信息,未知物结构为:CH2=CH-CH2-OH。例三:未知物分子式为例三:未知物分子式为C12H24O2,其红外图如下图所示,试,其红外图如下图所示,试推其结构。推其结构。第62页,共73页,编辑于2022年,星期三解:解:1.1 2.1703cm-1处的强吸收知该化合物含羰基,与一处的强吸收知该化合物含羰基,与一个不饱和度相符。
49、个不饱和度相符。第63页,共73页,编辑于2022年,星期三3.2920、2851cm-1处吸收很强而处吸收很强而2956、2866cm-1处的吸收处的吸收很弱,这说明很弱,这说明CH2的数目远多于的数目远多于CH3的数目,的数目,723cm-1的显著的显著吸收所证实,说明未知物很可能具有一个正构的长碳链。吸收所证实,说明未知物很可能具有一个正构的长碳链。4.2956、2851cm-1的吸收是叠加在另一个宽峰之上,从其底部的吸收是叠加在另一个宽峰之上,从其底部加宽可明显地看到这点。从分子式含两个氧知此宽峰来自加宽可明显地看到这点。从分子式含两个氧知此宽峰来自OH,很强的波数位移说明有很强的氢键
50、缔合。结合很强的波数位移说明有很强的氢键缔合。结合1703cm-1羰基吸收羰基吸收,可推测未知物含羧酸官能团。,可推测未知物含羧酸官能团。940、1305、1412cm-1等等处的吸收进一步说明羧酸官能团的存在。处的吸收进一步说明羧酸官能团的存在。综上所述,未知物结构为:综上所述,未知物结构为:CH3(CH2)10COOH例四:未知物分子式为例四:未知物分子式为C6H8N2,其红外图如下图所示,试,其红外图如下图所示,试推其结构。推其结构。第64页,共73页,编辑于2022年,星期三1.42.可能有苯环,此推测由可能有苯环,此推测由3031、1593、1502的吸收峰所证实,由的吸收峰所证实,