人教版福建省仙游第一中学学年高中数学 2.3.1变量间的相关关系(1)课件 新人教A必修3.pptx

上传人:赵** 文档编号:51610572 上传时间:2022-10-19 格式:PPTX 页数:44 大小:370.48KB
返回 下载 相关 举报
人教版福建省仙游第一中学学年高中数学 2.3.1变量间的相关关系(1)课件 新人教A必修3.pptx_第1页
第1页 / 共44页
人教版福建省仙游第一中学学年高中数学 2.3.1变量间的相关关系(1)课件 新人教A必修3.pptx_第2页
第2页 / 共44页
点击查看更多>>
资源描述

《人教版福建省仙游第一中学学年高中数学 2.3.1变量间的相关关系(1)课件 新人教A必修3.pptx》由会员分享,可在线阅读,更多相关《人教版福建省仙游第一中学学年高中数学 2.3.1变量间的相关关系(1)课件 新人教A必修3.pptx(44页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2.3.1 2.3.1 变量间的相关关系变量间的相关关系2021/8/9 星期一1 在学校,老师经常对学生这样说:在学校,老师经常对学生这样说:“如果如果你的数学成绩好,那么你的物理学习就不会你的数学成绩好,那么你的物理学习就不会有什么大问题。有什么大问题。”按照这种说法,似乎学生按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关的物理成绩与数学成绩之间存在着一种相关关系。这种说法有没有依据呢?关系。这种说法有没有依据呢?思考思考2021/8/9 星期一2 凭我们的学习经验可知,物理成绩确实凭我们的学习经验可知,物理成绩确实与数学成绩有一定的关系,但除此以外,还与数学成绩有一定的关系

2、,但除此以外,还存在其他影响物理成绩的因素。例如,是否存在其他影响物理成绩的因素。例如,是否喜欢物理,用在物理学习上的时间等等。当喜欢物理,用在物理学习上的时间等等。当我们主要考虑数学成绩对物理成绩的影响时,我们主要考虑数学成绩对物理成绩的影响时,就是主要考虑这两者之间的相关关系。就是主要考虑这两者之间的相关关系。2021/8/9 星期一3 1商品销售收入与广告支出经费之间的关系。商品销售收入与广告支出经费之间的关系。商品销售收入与广告支出经费之间有着密切的联系,商品销售收入与广告支出经费之间有着密切的联系,但商品收入不仅与广告支出多少有关,还与商品质但商品收入不仅与广告支出多少有关,还与商品

3、质量、居民收入等因素有关。量、居民收入等因素有关。我们还可以举出现实生活中存在的许多相关我们还可以举出现实生活中存在的许多相关关系的问题。例如:关系的问题。例如:2021/8/9 星期一4 在一定范围内,施肥量越大,粮食产量就越高。在一定范围内,施肥量越大,粮食产量就越高。但是,施肥量并不是决定粮食产量的唯一因素,但是,施肥量并不是决定粮食产量的唯一因素,因为粮食产量还要受到土壤质量、降雨量、田因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素的影响。间管理水平等因素的影响。2粮食产量与施肥量之间的关系。粮食产量与施肥量之间的关系。2021/8/9 星期一5 在一定年龄段内,随着年龄的增

4、长,人体内在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等有关,可能还与个与饮食习惯、体育锻炼等有关,可能还与个人的先天体质有关。人的先天体质有关。3人体内脂肪含量与年龄之间的关系。人体内脂肪含量与年龄之间的关系。2021/8/9 星期一6你还能举出一些类似的例子吗?你还能举出一些类似的例子吗?2021/8/9 星期一7 应当说,对于上述各种问题中的两个变量之应当说,对于上述各种问题中的两个变量之间的相关关系,我们都可以根据自己的生活、学间的相关关系,我们都可以根据自己的生活、学习经验作出相应的判断,因为习

5、经验作出相应的判断,因为“经验当中有规律经验当中有规律”。但是,不管你经验多么丰富如果只凭经验办。但是,不管你经验多么丰富如果只凭经验办事,还是很容易出错的。因此,在分析两个变量事,还是很容易出错的。因此,在分析两个变量之间的关系时,我们还需要有一些有说服力的方之间的关系时,我们还需要有一些有说服力的方法。法。2021/8/9 星期一8 自变量取值一定时自变量取值一定时,因变量的取因变量的取值值带有一定随机性带有一定随机性的两个变量之间的关系的两个变量之间的关系,叫做相关关系叫做相关关系.变量间相关关系的概念变量间相关关系的概念:相同点相同点:两者均是指两个变量间的关系两者均是指两个变量间的关

6、系.不同点不同点:函数关系是一种函数关系是一种确定确定的关系的关系;相关关系是一种相关关系是一种非确定非确定的关系的关系.事实上事实上,函数关系是函数关系是两个非随机变量两个非随机变量的关的关系系,而相关关系是而相关关系是随机变量随机变量与与随机变量随机变量间的关系间的关系.函数关系是一种函数关系是一种因果因果关系关系,而相关关系而相关关系不一定是因果关不一定是因果关系系,也可能是伴随关系也可能是伴随关系.相关关系与函数关系的异同点相关关系与函数关系的异同点:请同学们回忆一下请同学们回忆一下,我们以前是否学过变量间的关系呢我们以前是否学过变量间的关系呢?两个变量间的函数关系两个变量间的函数关系

7、.2021/8/9 星期一91.下列关系中下列关系中,是带有随机性相关关系的是是带有随机性相关关系的是 .正方形的边长与面积的关系正方形的边长与面积的关系;水稻产量与施肥量之间的关系水稻产量与施肥量之间的关系;人的身高与年龄之间的关系人的身高与年龄之间的关系;降雪量与交通事故发生之间降雪量与交通事故发生之间的关系的关系.2.下列两个变量之间的关系哪个不是函数关系()下列两个变量之间的关系哪个不是函数关系()A角度和它的余弦值角度和它的余弦值B.正方形边长和面积正方形边长和面积C正边形的边数和它的内角和正边形的边数和它的内角和 D.人的年龄和身高人的年龄和身高D即学即用即学即用2021/8/9

8、星期一10.年龄年龄脂肪脂肪239.52717.83921.24125.9454927.526.35028.25329.65430.25631.45730.8年龄年龄脂肪脂肪5833.56035.26134.6 如上的一组数据,你能分析人体的脂肪如上的一组数据,你能分析人体的脂肪含量与年龄之间有怎样的关系吗?含量与年龄之间有怎样的关系吗?探究探究2021/8/9 星期一111、散点图:散点图:将各数据在平面坐标系中的对应点画出来,得到表示将各数据在平面坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图两个变量的一组数据的图形,这样的图形叫做散点图。如下图:如下图:O

9、202530 354045 505560 65年龄年龄脂肪含量脂肪含量5101520253035402021/8/9 星期一12 从刚才的散点图发现:年龄越大,体内脂肪含量越从刚才的散点图发现:年龄越大,体内脂肪含量越高,点的位置散布在从左下角到右上角的区域。称它们高,点的位置散布在从左下角到右上角的区域。称它们成成正相关正相关。但有的两个变量的相关,如下图所示:但有的两个变量的相关,如下图所示:如高原含氧量与海拔高如高原含氧量与海拔高度的相关关系,海平面以上,度的相关关系,海平面以上,海拔高度越高,含氧量越少。海拔高度越高,含氧量越少。作出散点图发现,它们散作出散点图发现,它们散布在从左上角

10、到右下角的区布在从左上角到右下角的区域内。又如汽车的载重和汽域内。又如汽车的载重和汽车每消耗车每消耗1升汽油所行使的升汽油所行使的平均路程,称它们成平均路程,称它们成负相关负相关.思考:课本思考:课本P86的思考题的思考题.O2021/8/9 星期一13例例1:5个学生的数学和物理成绩如下表:个学生的数学和物理成绩如下表:ABCDE数学数学8075706560物理物理7066686462画出散点图,并判断它们是否有相关关系。画出散点图,并判断它们是否有相关关系。数学成绩数学成绩解:解:由散点图可见,两者之间具有正相关关系。由散点图可见,两者之间具有正相关关系。2021/8/9 星期一14例例2

11、:有一个同学家开了一个小卖部,他为了研究气温对:有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:与当天气温的对比表:摄氏温度摄氏温度 -5 0 4 7 12 15 19 23 27 31 36热饮杯数热饮杯数 156 150 132 128 130 116 104 89 93 76 54(1)画出散点图;画出散点图;(2)从散点图中发现气温与热饮销售杯数之间关系的从散点图中发现气温与热饮销售杯数之间关系的一般规律;一般规律;2021/8/9 星期一15解解:(1)散点图散点图(2)气

12、温与热饮杯数成负相关气温与热饮杯数成负相关,即气温越高,卖出即气温越高,卖出去的热饮杯数越少。去的热饮杯数越少。温度温度热饮杯数热饮杯数2021/8/9 星期一16从已经掌握的知识来看,吸烟会损害身体的健康。从已经掌握的知识来看,吸烟会损害身体的健康。但是除了吸烟之外但是除了吸烟之外还有许多其他的随机因素还有许多其他的随机因素影响身影响身体健康,人体健康是由很多因素共同作用的结果,体健康,人体健康是由很多因素共同作用的结果,我们可以找到长寿的吸烟者,也我们可以找到长寿的吸烟者,也更容易更容易发现由于吸发现由于吸烟而引发的患病者,烟而引发的患病者,吸烟与健康是一种相关关系,吸烟与健康是一种相关关

13、系,所以吸烟不一定引起健康问题。所以吸烟不一定引起健康问题。有关法律规定,香烟盒上必须印上有关法律规定,香烟盒上必须印上“吸烟有害吸烟有害健康健康”的警示语。吸烟是否一定会引起健康问题?的警示语。吸烟是否一定会引起健康问题?你认为你认为“健康问题不一定是由吸烟引起的,所以可健康问题不一定是由吸烟引起的,所以可以吸烟以吸烟”的说法对吗?的说法对吗?但吸烟引起健康问题的可能性大,因此但吸烟引起健康问题的可能性大,因此“健康问健康问题不一定是由吸烟引起的,所以可以吸烟题不一定是由吸烟引起的,所以可以吸烟”的的说法是不对的。说法是不对的。练习练习1:2021/8/9 星期一17从已经掌握的知识来看,没

14、有发现根据说明从已经掌握的知识来看,没有发现根据说明“天鹅能够天鹅能够带来孩子带来孩子”,完全可能存在既能吸引天鹅又使婴儿出生完全可能存在既能吸引天鹅又使婴儿出生率高的第三个因素(例如独特的环境因素),率高的第三个因素(例如独特的环境因素),即天鹅与即天鹅与婴儿出生率之间没有直接的关系,因此婴儿出生率之间没有直接的关系,因此“天鹅能够带天鹅能够带来孩子来孩子”的结论不可靠。的结论不可靠。某地区的环境条件适合天鹅栖息繁衍,有人统计发现某地区的环境条件适合天鹅栖息繁衍,有人统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生

15、率也高,天鹅少的地方婴儿出生率低。于是,村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低。于是,他就得出一个结论:天鹅能够带来孩子。你认为这样得到的他就得出一个结论:天鹅能够带来孩子。你认为这样得到的结论可靠吗?如何证明这个结论的可靠性?结论可靠吗?如何证明这个结论的可靠性?而要证实此结论是否可靠,可以通过试验来进行。相而要证实此结论是否可靠,可以通过试验来进行。相同的环境下将居民随机地分为两组,一组居民和天鹅同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同。附

16、近不让天鹅活动,对比两组居民的出生率是否相同。练习练习2:2021/8/9 星期一18如果散点图中点的分布如果散点图中点的分布从从整体整体上看上看大致在一条直大致在一条直线附近,我们就称这两个变量之间具有线附近,我们就称这两个变量之间具有线性相关线性相关关系关系,这条直线就叫做,这条直线就叫做回归直线回归直线。这条回归直线的方程,简称为回归方程。这条回归直线的方程,简称为回归方程。回归直线回归直线 2021/8/9 星期一191.如果所有的样本点都落在某一函数曲线上,变如果所有的样本点都落在某一函数曲线上,变量之间具有函数关系量之间具有函数关系2.如果所有的样本点都落在某一函数曲线如果所有的样

17、本点都落在某一函数曲线附近附近,变量之间就有变量之间就有相关关系相关关系3.如果所有的样本点都落在某一如果所有的样本点都落在某一直线附近直线附近,变量,变量之间就有之间就有线性相关关系线性相关关系 只有散点图中的点只有散点图中的点呈条状集中在某一直线呈条状集中在某一直线周围周围的时候,才可以说两个变量之间具有线性的时候,才可以说两个变量之间具有线性关系,才有两个变量的正线性相关和负线性相关系,才有两个变量的正线性相关和负线性相关的概念,才可以用回归直线来描述两个变量关的概念,才可以用回归直线来描述两个变量之间的关系之间的关系2021/8/9 星期一20整体上最接近整体上最接近 方案一:方案一:

18、采用测量的方法:先画一条直线,测采用测量的方法:先画一条直线,测量出各点到它的距离,然后移动直线,到达一量出各点到它的距离,然后移动直线,到达一个使个使距离之和最小距离之和最小的位置,测量出此时直线的的位置,测量出此时直线的斜率和截距斜率和截距,就得到回归方程。,就得到回归方程。如何具体的求出这个回归方程呢?如何具体的求出这个回归方程呢?2021/8/9 星期一21方案二方案二:在图中选取两点画直线,使得直线在图中选取两点画直线,使得直线两侧的点的个数基本相同。两侧的点的个数基本相同。2021/8/9 星期一22方案三方案三:在散点图中多取几组点,确定几条直线的在散点图中多取几组点,确定几条直

19、线的方程,分别求出各条直线的方程,分别求出各条直线的斜率和截距的平均数斜率和截距的平均数,将这两个平均数作为回归方程的斜率和截距。将这两个平均数作为回归方程的斜率和截距。2021/8/9 星期一23上述三种方案均有一定的道理,但可靠性不强,上述三种方案均有一定的道理,但可靠性不强,我们回到回归直线的我们回到回归直线的定义定义。求回归方程的关键是如何求回归方程的关键是如何用数学的方法来刻画用数学的方法来刻画“从整体上看,各点与直线的偏差最小从整体上看,各点与直线的偏差最小”。如果散点图中点的分布如果散点图中点的分布从从整体整体上看上看大致在一条直线附近,大致在一条直线附近,我们就称这两个变量之间

20、具有我们就称这两个变量之间具有线性相关关系线性相关关系,这条直线,这条直线就叫做就叫做回归直线回归直线。2021/8/9 星期一24(二)回归直线(二)回归直线如何求回归直线的方程如何求回归直线的方程探究探究 实际上实际上,求回归直线的关键是如何用数学的方法求回归直线的关键是如何用数学的方法来刻画来刻画”从整体上看从整体上看,各点到此直线的距离最小各点到此直线的距离最小”.2021/8/9 星期一25回归直线回归直线 实际上实际上,求回归直线的关键是如何用数学的求回归直线的关键是如何用数学的方法来刻画方法来刻画“从整体上看从整体上看,各点到此直线的距离各点到此直线的距离最小最小”.2021/8

21、/9 星期一262021/8/9 星期一27问题归结为问题归结为:a,b取什么值时取什么值时Q最小最小,即总体偏即总体偏差最小差最小.下面是计算回归方程的斜率和截距的下面是计算回归方程的斜率和截距的一般公式一般公式.这种通过求总体偏差的最小值而得到回归直线的方这种通过求总体偏差的最小值而得到回归直线的方法就是最小二乘法法就是最小二乘法.2021/8/9 星期一28以上公式的推导较复杂,故不作推导,但它的原理较为简单:即各点到该直线的距离的平方和最小,这一方法叫最小二乘法。2021/8/9 星期一29归纳:归纳:求样本数据的线性回归方程,可按下列步骤进行:求样本数据的线性回归方程,可按下列步骤进

22、行:第一步,计算平均数第一步,计算平均数 ,第二步,求和第二步,求和 ,(列表)列表)第三步,计算第三步,计算 第四步,写出回归方程第四步,写出回归方程 2021/8/9 星期一30思考:思考:利用利用计算器计算器或计算机或计算机可求得年龄和可求得年龄和人体脂肪含量的样本数据的回归方程为人体脂肪含量的样本数据的回归方程为 ,由此我们可以根据,由此我们可以根据一个人年龄预测其体内脂肪含量的百分比一个人年龄预测其体内脂肪含量的百分比的的回归值回归值.若某人若某人6565岁,则其体内脂肪含量岁,则其体内脂肪含量的百分比的百分比约约为多少?为多少?37.1(0.57765-0.448=37.1)202

23、1/8/9 星期一31若某人若某人6565岁,可预测他体内脂肪含量在岁,可预测他体内脂肪含量在37.137.1(0.57765-0.448=37.10.57765-0.448=37.1)附近的)附近的可能性比较可能性比较大。大。但不能说他体内脂肪含量一定是但不能说他体内脂肪含量一定是37.137.1原因原因:线性回归方程中的截距和斜率:线性回归方程中的截距和斜率都是通过样都是通过样本本计算的计算的,存在随机误差存在随机误差,这种误差可以导致预测,这种误差可以导致预测结果的偏差,即使截距斜率没有误差,也不可能百结果的偏差,即使截距斜率没有误差,也不可能百分百地保证对应于分百地保证对应于x x,预

24、报值,预报值Y Y能等于实际值能等于实际值y y2021/8/9 星期一32例例3 3:有一个同学家开了一个小卖部,他为了研究:有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:的热饮杯数与当天气温的对比表:1 1、画出散点图;、画出散点图;2 2、从散点图中发现气温与热饮、从散点图中发现气温与热饮销售杯数之间关系的一般规律;销售杯数之间关系的一般规律;3 3、求回归方程;、求回归方程;4 4、如果某天的气温是、如果某天的气温是2 2摄氏度,摄氏度,预测这天卖出的热饮杯数。预测这天卖出的热

25、饮杯数。2021/8/9 星期一331、散点图、散点图2 2、从图、从图3-13-1看到,各点散布在从左上角到由下角的看到,各点散布在从左上角到由下角的区域里,因此,气温与热饮销售杯数之间成负相关,区域里,因此,气温与热饮销售杯数之间成负相关,即气温越高,卖出去的热饮杯数越少。即气温越高,卖出去的热饮杯数越少。3 3、从散点图可以看出,这些点大致分布在一条直、从散点图可以看出,这些点大致分布在一条直线的附近,因此利用公式求出线的附近,因此利用公式求出回归方程回归方程的系数。的系数。Y=-2.352x+147.767Y=-2.352x+147.7674 4、当、当x=2x=2时,时,Y=143.

26、063 Y=143.063 因此,某天的气温为因此,某天的气温为2 2摄氏度时,这天大约可以卖出摄氏度时,这天大约可以卖出143143杯热饮。杯热饮。2021/8/9 星期一34例例4:给给出施化肥量出施化肥量对对水稻水稻产产量影响的量影响的试验试验数据:数据:施化肥施化肥量量x15202530354045水稻水稻产产量量y330 345 365 405 445 450 455(1)(1)画出上表的散点画出上表的散点图图;(2)(2)求出回求出回归归直直线线并且画出并且画出图图形形.2021/8/9 星期一35从而得回归直线方程是从而得回归直线方程是 解:解:(1)(1)散点散点图图(略)(略

27、)(2)(2)表中的数据表中的数据进进行具体行具体计计算,列成以下表格算,列成以下表格20475180001557512150912569004950 xiyi455450445405365345330yi45403530252015xi7654321i(图图形略形略)故可得到故可得到2021/8/9 星期一36练习练习x1234y1/23/2231.已知变量已知变量x和变量和变量y有下列对应数据有下列对应数据则则y对对x的回归直线方程为什么?的回归直线方程为什么?2021/8/9 星期一372 2、下列两个变量之间的关系哪个不是函数关系(、下列两个变量之间的关系哪个不是函数关系()A A角度

28、和它的余弦值角度和它的余弦值B.B.正方形边长和面积正方形边长和面积C C正边形的边数和它的内角和正边形的边数和它的内角和D.D.人的年龄和身高人的年龄和身高D2021/8/9 星期一384设设有一个回有一个回归归方程方程,当,当变变量量增加增加1个单位时(个单位时()A平均增加平均增加2个个单单位位CD平均增加平均增加3个单位个单位平均减少平均减少2个单位个单位平均减少平均减少3个单位个单位.BA当当变变量量x增加增加1个单位时个单位时,平均增加平均增加b个单位个单位2021/8/9 星期一395、线线性回性回归归方程表示的直方程表示的直线线必经过点必经过点()A(6,0)B(0,6)C(1

29、,6)D(6,1)6、线线性回性回归归方程表示的直方程表示的直线线必经过点必经过点()A(0,0)B(,0)C(0,)D(,)BD11.69 8、已知回、已知回归归方程方程 =4.4x+838.19,则则可估可估计计x与与y的的增增长长速度之比速度之比约为约为_.1/4.42021/8/9 星期一409.9.三点三点(3,10),(7,20),(11,24)(3,10),(7,20),(11,24)的的线线性回性回归归方程是方程是()D2021/8/9 星期一41小结小结1.1.求样本数据的线性回归方程,可按求样本数据的线性回归方程,可按下列步骤进行:下列步骤进行:第一步,列表计算平均数第一步

30、,列表计算平均数 ,第二步,求和第二步,求和,第三步,计算第三步,计算 第四步,写出回归方程第四步,写出回归方程 2021/8/9 星期一422.2.回归方程被样本数据回归方程被样本数据惟一惟一确定确定,各样本点,各样本点大致分布在回归直线附近大致分布在回归直线附近.对同一个总体,对同一个总体,不同的样本数据对应不同的回归直线不同的样本数据对应不同的回归直线,所以,所以回归直线也具有回归直线也具有随机性随机性.3.3.对于任意一组样本数据,利用上述公式都对于任意一组样本数据,利用上述公式都可以求得可以求得“回归方程回归方程”,如果这组数据不具如果这组数据不具有线性相关关系,即不存在回归直线,那么有线性相关关系,即不存在回归直线,那么所得的所得的“回归方程回归方程”是没有实际意义的是没有实际意义的.因此,因此,对一组样本数据,应先作散点图,对一组样本数据,应先作散点图,在具有线在具有线性相关关系的前提下性相关关系的前提下再求回归方程再求回归方程.2021/8/9 星期一432021/8/9 星期一44

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁