《初三数学圆的学问点归纳.docx》由会员分享,可在线阅读,更多相关《初三数学圆的学问点归纳.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初三数学圆的学问点归纳 圆是指在一个平面内,一动点以肯定点为中心,以肯定长度为距离旋转一周所形成的封闭曲线,标准方程是(x-a)+(y-b)=r,其中点(a,b)是圆心,r是半径。下面是我为大家整理的有关初三数学圆的学问点归纳,盼望对你们有关心! 初三数学圆的学问点归纳 一、圆的定义。 1、以定点为圆心,定长为半径的点组成的图形。 2、在同一平面内,到一个定点的距离都相等的点组成的图形。 二、圆的各元素。 1、半径:圆上一点与圆心的连线段。 2、直径:连接圆上两点有经过圆心的线段。 3、弦:连接圆上两点线段(直径也是弦)。 4、弧:圆上两点之间的曲线部分。半圆周也是弧。 (1)劣弧:小于半圆周
2、的弧。 (2)优弧:大于半圆周的弧。 5、圆心角:以圆心为顶点,半径为角的边。 6、圆周角:顶点在圆周上,圆周角的两边是弦。 7、弦心距:圆心到弦的垂线段的长。 三、圆的基本性质。 1、圆的对称性。 (1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是旋转对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 平分弧的直径,垂直平分弧所对的弦。 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。 (1)同弧所对的圆周
3、角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。 5、夹在平行线间的两条弧相等。 6、设O的半径为r,OP=d。 7、(1)过两点的圆的圆心肯定在两点间连线段的中垂线上。 (2)不在同始终线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。 (直角三角形的外心就是斜边的中点。) 8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。 直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线
4、与圆相离。 9、平面直角坐标系中,A(x1,y1)、B(x2,y2)。 则AB=(x1+x2,y1+y2) 10、圆的切线判定。 (1)d=r时,直线是圆的切线。 切点不明确:画垂直,证半径。 (2)经过半径的外端且与半径垂直的直线是圆的切线。 切点明确:连半径,证垂直。 11、圆的切线的性质(补充)。 (1)经过切点的直径肯定垂直于切线。 (2)经过切点并且垂直于这条切线的直线肯定经过圆心。 12、切线长定理。 (1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。 (2)切线长定理。 PA、PB切O于点A、B PA=PB,1=2。 13、内切圆及有关计算。
5、(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。 (2)如图,ABC中,AB=5,BC=6,AC=7,O切ABC三边于点D、E、F。 求:AD、BE、CF的长。 分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x. 可得方程:5-x+7-x=6,解得x=3 (3)ABC中,C=90,AC=b,BC=a,AB=c。 求内切圆的半径r。 分析:先证得正方形ODCE, 得CD=CE=r AD=AF=b-r,BE=BF=a-r b-r+a-r=c 得r=(b+a-c)/2 (4)SABC=abc/4r 14、(补充) (1)弦切角:角的顶点在圆周上,角的一边
6、是圆的切线,另一边是圆的弦。 如图,BC切O于点B,AB为弦,ABC叫弦切角,ABC=D。 (2)相交弦定理。 圆的两条弦AB与CD相交于点P,则PAPB=PCPD。 (3)切割线定理。 如图,PA切O于点A,PBC是O的割线,则PA2=PBPC。 (4)推论:如图,PAB、PCD是O的割线,则PAPB=PCPD。 15、圆与圆的位置关系。 (1)外离:dr1+r2,交点有0个; 外切:d=r1+r2,交点有1个; 相交:r1-r2 内切:d=r1-r2,交点有1个; 内含:0d (2)性质。 相交两圆的连心线垂直平分公共弦。 相切两圆的连心线必经过切点。 16、圆中有关量的计算。 (1)弧长
7、有L表示,圆心角用n表示,圆的半径用R表示。 L=n(圆心角)x(圆周率)xr(半径)/180 (2)扇形的面积用S表示。 S=lr/2 (3)圆锥的侧面绽开图是扇形。 r为底面圆的半径,a为母线长。 扇形的圆心角=l/r S侧=arS全=ar+r2 中考数学圆学问点总结 1.不在同始终线上的三点确定一个圆。 2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 推论1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平行弦所夹的弧相等 3.圆是以圆
8、心为对称中心的中心对称图形 4.圆是定点的距离等于定长的点的集合 5.圆的内部可以看作是圆心的距离小于半径的点的集合 6.圆的外部可以看作是圆心的距离大于半径的点的集合 7.同圆或等圆的半径相等 8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 10.推论 在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。 11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 12.直线L和O相交 d 直线L和O相切 d=r
9、直线L和O相离 dr 13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 14.切线的性质定理 圆的切线垂直于经过切点的半径 15.推论1 经过圆心且垂直于切线的直线必经过切点 16.推论2 经过切点且垂直于切线的直线必经过圆心 17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角 18.圆的外切四边形的两组对边的和相等 外角等于内对角 19.假如两个圆相切,那么切点肯定在连心线上 20.两圆外离 dR+r 两圆外切 d=R+r .两圆相交 R-rr) .两圆内切 d=R-r(Rr) 两圆内含dr) 21.定理 相交两圆的连心
10、线垂直平分两圆的公共弦 22.定理 把圆分成n(n3): 依次连结各分点所得的多边形是这个圆的内接正n边形 经过各分点作圆的切线,以相邻切线的交点为顶点的.多边形是这个圆的外切正n边形 23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 24.正n边形的每个内角都等于(n-2)180/n 25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长 27.正三角形面积3a/4 a表示边长 28.假如在一个顶点四周有k个正n边形的角,由于这些角的和应为 360,因此k(n-2)180/n=360化为(n-2)(k-2)=4 29.弧长计算公式:L=n兀R/180 30.扇形面积公式:S扇形=n兀R2/360=LR/2 31.内公切线长= d-(R-r) 外公切线长= d-(R+r) 32.定理 一条弧所对的圆周角等于它所对的圆心角的一半 33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 34.推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所 对的弦是直径 初三数学圆的学问点归纳