《精品解析:浙江省舟山市备考2022年中考数学试题(解析版).doc》由会员分享,可在线阅读,更多相关《精品解析:浙江省舟山市备考2022年中考数学试题(解析版).doc(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、备考2022年舟山市中考数学试卷一、选择题1.备考2022年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m数36000000用科学记数法表示为()A. 0.36×108B. 36×107C. 3.6×108D. 3.6×107【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:36 000 0003.6×107,故答案选:D【点睛】本题主要考查了科学记数法的表示方法,关
2、键是确定a的值和n的值2.如图,是由四个相同的小正方体组成的立体图形,它的左视图是()A. B. C. D. 【答案】A【解析】【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形故选A3.已知样本数据2,3,5,3,7,下列说法不正确的是()A. 平均数是4B. 众数是3C. 中位数是5D. 方差是3.2【答案】C【解析】【分析】根据众数、中位数、平均数、方差的定义和计算公式分别进行分析即可【详解】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S2(24)2+(34)2+(54)2+(34)2+(74)23.2故选:C【点睛】本题考
3、查了对中位数、平均数、众数、方差的知识点应用4.一次函数y=2x1的图象大致是()A. B. C. D. 【答案】B【解析】【分析】根据一次函数的性质,判断出k和b的符号即可解答【详解】由题意知,k=20,b=10时,函数图象经过一、三、四象限故选B【点睛】本题考查了一次函数y=kx+b图象所过象限与k,b的关系,当k0,b0时,函数图象经过一、三、四象限5.如图,在直角坐标系中,OAB的顶点为O(0,0),A(4,3),B(3,0)以点O为位似中心,在第三象限内作与OAB的位似比为的位似图形OCD,则点C坐标()A. (1,1)B. (,1)C. (1,)D. (2,1)【答案】B【解析】【
4、分析】根据关于以原点为位似中心的对应点的坐标的关系,把A点的横纵坐标都乘以即可【详解】解:以点O为位似中心,位似比为,而A (4,3),A点的对应点C的坐标为(,1)故选:B【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k6.不等式3(1x)24x的解在数轴上表示正确的是()A. B. C. D. 【答案】A【解析】【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式的解集,继而可得答案【详解】解:去括号,得:33x24x,移项,得:3x+4x23,合并,得:x1,故选:A【点睛】本题考查了
5、解一元一次不等式及用数轴表示不等式的解集,正确解不等式是解题关键,注意“”向右,“”向左,带等号用实心,不带等号用空心7.如图,正三角形ABC的边长为3,将ABC绕它的外心O逆时针旋转60°得到A'B'C',则它们重叠部分的面积是()A. 2B. C. D. 【答案】C【解析】【分析】根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解【详解】解:作AMBC于M,如图:重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形ABC是等边三角形,AMBC,ABBC3,BMCMBC,BAM30&
6、#176;,AMBM,ABC的面积BC×AM×3×,重叠部分的面积ABC的面积;故选:C【点睛】本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键8.用加减消元法解二元一次方程组时,下列方法中无法消元的是()A. ×2B. ×(3)C. ×(2)+D. ×3【答案】D【解析】【分析】根据各选项分别计算,即可解答【详解】方程组利用加减消元法变形即可解:A、×2可以消元x,不符合题意;B、×(3)可以消元y,不符合题意;C、×
7、;(2)+可以消元x,不符合题意;D、×3无法消元,符合题意故选:D【点睛】本题考查了加减消元法解二元一次方程组,只有当两个二元一次方程未知数的系数相同或相反时才可以用加减法消元,系数相同相减消元,系数相反相加消元9.如图,在等腰ABC中,ABAC2,BC8,按下列步骤作图:以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于EF的长为半径作弧相交于点H,作射线AH;分别以点A,B为圆心,大于AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;以点O为圆心,线段OA长为半径作圆则O的半径为()A. 2B. 10C. 4D. 5【答案
8、】D【解析】【分析】如图,设OA交BC于T解直角三角形求出AT,再在RtOCT中,利用勾股定理构建方程即可解决问题【详解】解:如图,设OA交BC于TABAC2,AO平分BAC,AOBC,BTTC4,AE,在RtOCT中,则有r2(r2)2+42,解得r5,故选:D【点睛】本题考查作图复杂作图,等腰三角形的性质,垂径定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题10.已知二次函数yx2,当axb时myn,则下列说法正确的是()A. 当nm1时,ba有最小值B. 当nm1时,ba有最大值C. 当ba1时,nm无最小值D. 当ba1时,nm有最大值【答案】B【解析】【分析】当ba1时,先
9、判断出四边形BCDE是矩形,得出BCDEba1,CDBEm,进而得出ACnm,即tannm,再判断出0°ABC90°,即可得出nm的范围;当nm1时,同方法得出NHPQba,HQPNm,进而得出MHnm1,而tanMHN,再判断出45°MNH90°,即可得出结论【详解】解:当ba1时,如图1,过点B作BCAD于C, BCD90°,ADEBED90°,ADOBCDBED90°,四边形BCDE是矩形,BCDEba1,CDBEm,ACADCDnm,在RtACB中,tanABCnm,点A,B在抛物线yx2上,0°ABC90
10、°,tanABC0,nm0,即nm无最大值,有最小值,最小值为0,故选项C,D都错误;当nm1时,如图2,过点N作NHMQ于H,同的方法得,NHPQba,HQPNm,MHMQHQnm1,在RtMHQ中,tanMNH,点M,N在抛物线yx2上,m0,当m0时,n1,点N(0,0),M(1,1),NH1,此时,MNH45°,45°MNH90°,tanMNH1,1,当a,b异号时,且m=0,n=1时,a,b的差距是最大的情况,此时b-a=2,ba无最小值,有最大值,最大值为2,故选项A错误;故选:B【点睛】此题主要考查了二次函数的性质,矩形的判定和性质,锐角三
11、角函数,确定出MNH的范围是解本题的关键二、填空题11.分解因式:m29_【答案】(m+3)(m3)【解析】【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2b2(a+b)(ab)【详解】解:m29m232(m+3)(m3)故答案为:(m+3)(m3)【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键12.如图所示,平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件: ,使得平行四边形ABCD为菱形【答案】AD=DC(答案不唯一)【解析】试题分析:由四边形ABCD是平行四边形,添加AD=DC,根据邻边相等的平行四边形是菱形的判定,可使得平行
12、四边形ABCD为菱形;添加ACBD,根据对角线互相垂直的平行四边形是菱形的判定,可使得平行四边形ABCD为菱形答案不唯一13.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是_【答案】【解析】【分析】直接利用概率公式求解【详解】解:蚂蚁获得食物概率故答案为:【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数14.如图,在半径为的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为_;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为_【答案】 (1). (2). 【
13、解析】【分析】由勾股定理求扇形的半径,再根据扇形面积公式求值;根据扇形的弧长等于底面周长求得底面半径即可【详解】解:连接BC,由BAC90°得BC为O的直径,BC2,在RtABC中,由勾股定理可得:ABAC2,S扇形ABC;扇形的弧长为:,设底面半径为r,则2r,解得:r,故答案为:,【点睛】本题考查了圆锥计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长15.数学家斐波那契编写的算经中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数设第一次分钱的人数为x人,则可列方程
14、_【答案】【解析】【分析】根据“第二次每人所得与第一次相同,”列分式方程即可得到结论【详解】解:根据题意得,故答案为:【点睛】本题主要考查分式方程的实际应用,找出等量关系,列出分式方程,是解题的关键16.如图,有一张矩形纸条ABCD,AB5cm,BC2cm,点M,N分别在边AB,CD上,CN1cm现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上当点B'恰好落在边CD上时,线段BM的长为_cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_cm【答案】 (1). (2). 【解析】【分析】第一个问题证明BMMB
15、NB,求出NB即可解决问题第二个问题,探究点E的运动轨迹,寻找特殊位置解决问题即可【详解】如图1中,四边形ABCD是矩形,ABCD,13,由翻折的性质可知:12,BMMB,23,MBNB,NB(cm),BMNB(cm)如图2中,当点M与A重合时,AEEN,设AEENxcm,在RtADE中,则有x222+(4x)2,解得x,DE4(cm),如图3中,当点M运动到MBAB时,DE的值最大,DE5122(cm),如图4中,当点M运动到点B落在CD时,DB(即DE)51(4)(cm),点E的运动轨迹EEE,运动路径EE+EB2+2(4)()(cm)故答案为,()【点睛】本题考查翻折变换,矩形的性质,解
16、直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题三、解答题17.(1)计算:(备考2022)0+|3|;(2)化简:(a+2)(a2)a(a+1)【答案】(1)2;(2)4a【解析】【分析】(1)直接利用零指数幂的性质和二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用平方差公式以及单项式乘以多项式计算得出答案【详解】解:(1)(备考2022)0+|3|12+32;(2)(a+2)(a2)a(a+1)a24a2a4a【点睛】本题主要考查了实数的运算,准确运用零指数幂、二次根式的性质和绝对值的性质是解题的关键18.比较x2+1与2x的大小(1)
17、尝试(用“”,“”或“”填空):当x1时,x2+1 2x;当x0时,x2+1 2x;当x2时,x2+1 2x(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由【答案】(1)=;>;>;(2)x2+12x,理由见解析【解析】【分析】(1)根据代数式求值,可得代数式的值,根据有理数的大小比较,可得答案;(2)根据完全平方公式,可得答案【详解】解:(1)当x1时,x2+12x;当x0时,x2+12x;当x2时,x2+12x故答案为:;(2)x2+12x证明:x2+12x(x1)20,x2+12x【点睛】本题考查了求代数式的值,有理数的大小比较,两个整式大小比较及证明,
18、公式法因式分解、不完全归纳法,解题关键是理解根据“A-B”的符号比较“A、B”的大小19.已知:如图,在OAB中,OAOB,O与AB相切于点C求证:ACBC小明同学的证明过程如下框:证明:连结OC,OAOB,AB,又OCOC,OACOBC,ACBC小明的证法是否正确?若正确,请在框内打“”;若错误,请写出你的证明过程【答案】错误,证明见解析【解析】分析】连结OC,根据切线的性质和等腰三角形的性质即可得到结论【详解】解:证法错误;证明:连结OC,O与AB相切于点C,OCAB,OAOB,ACBC【点睛】本题考查了切线的性质,等腰三角形的性质,熟练正确切线的性质是解题的关键20.经过实验获得两个变量
19、x(x0),y(y0)的一组对应值如下表x123456y62.921.51.21(1)请画出相应函数的图象,并求出函数表达式(2)点A(x1,y1),B(x2,y2)在此函数图象上若x1x2,则y1,y2有怎样的大小关系?请说明理由【答案】(1)图象见解析,();(2)y1y2,理由见解析【解析】【分析】(1)利用描点法即可画出函数图象,再利用待定系数法即可得出函数表达式;(2)根据反比例函数的性质解答即可【详解】解:(1)函数图象如图所示,设函数表达式为,把x1,y6代入,得k6,函数表达式为();(2)k60,在第一象限,y随x的增大而减小,0x1x2时,则y1y2【点睛】本题主要考查反比
20、例函数图象的特点和求函数关系表达式,解题的关键是求出函数表达式,并熟悉反比例函数的性质和特点21.小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)20142019年三种品牌电视机销售总量最多的是 品牌,月平均销售量最稳定的是 品牌(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由【答案】(1)B, C;(2)2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌(建议购买B品牌),理由见解析【解析】【分析】(1)从条形统计图
21、、折线统计图可以得出答案;(2)求出总销售量,“其它”的所占的百分比;(3)从市场占有率、平均销售量等方面提出建议【详解】解:(1)由条形统计图可得,20142019年三种品牌电视机销售总量最多的是B品牌,是1746万台;由条形统计图可得,20142019年三种品牌电视机月平均销售量最稳定的是C品牌,比较稳定,极差最小;故答案为:B,C;(2)20×12÷25%960(万台),125%29%34%12%,960×12%115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌,因为C品牌2019年的市场占有率最高,且5年的月
22、销售量最稳定;建议购买B品牌,因为B品牌的销售总量最多,受到广大顾客的青睐【点睛】本题考查了条形统计图,折线统计图,扇形统计图,认真审题,搞清三个统计图分别反映不同意义是解题关键22.为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向测量方案与数据如下表:课题测量河流宽度测量工具测量角度仪器,皮尺等测量小组第一小组第二小组第三小组测量方案示意图说明点B,C在点A的正东方向点B,D在点A的正东方向点B在点A的正东方向,点C在点A的正西方向测量数据BC60m,ABH70°,ACH35°BD20m,ABH70&
23、#176;,BCD35°BC101m,ABH70°,ACH35°(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(精确到0.1m)(参考数据:sin70°0.94,sin35°0.57,tan70°2.75,tan35°0.70)【答案】(1)第二个小组的数据无法计算河宽;(2)河宽为56.4m【解析】【分析】(1)第二个小组的数据无法计算出河宽;(2)第一个小组:证明BCBH60m,解直角三角形求出AH即可第三个小组:设AHxm,则CA,AB,根据CA+ABCB,构建方程求解即可【详解】解:(1
24、)第二个小组的数据无法计算河宽;(2)第一个小组的解法:ABHACH+BHC,ABH70°,ACH35°,BHCBCH35°,BCBH60m,AHBHsin70°60×0.9456.4(m)第三个小组的解法:设AHxm,则CA,AB,CA+ABCB,101,解得x56.4答:河宽为56.4m【点睛】本题考查解直角三角形的应用、等腰三角形的判定和性质等知识,弄清题意、列出方程是解答本题的关键23.在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中ACBDFE90°
25、;,BCEF3cm,ACDF4cm,并进行如下研究活动活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移【思考】图2中的四边形ABDE是平行四边形吗?请说明理由【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3)求AF的长活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转度(090),连结OB,OE(如图4)【探究】当EF平分AEO时,探究OF与BD的数量关系,并说明理由【答案】【思考】是,理由见解析;【发现】;【探究】BD2OF,理由见解析;【解析】【分析】【思考】由全等三角形的性质得出ABDE,BACE
26、DF,则ABDE,可得出结论;【发现】连接BE交AD于点O,设AFx(cm),则OAOE(x+4),得出OFOAAF2x,由勾股定理可得,解方程求出x,则AF可求出;【探究】如图2,延长OF交AE于点H,证明EFOEFH(ASA),得出EOEH,FOFH,则EHOEOHOBDODB,可证得EOHOBD(AAS),得出BDOH,则结论得证【详解】解:【思考】四边形ABDE是平行四边形证明:如图,ABCDEF,ABDE,BACEDF,ABDE,四边形ABDE是平行四边形;【发现】如图1,连接BE交AD于点O,四边形ABDE为矩形,OAODOBOE,设AFx(cm),则OAOE(x+4),OFOAA
27、F2x,在RtOFE中,OF2+EF2OE2,解得:x,AFcm【探究】BD2OF,证明:如图2,延长OF交AE于点H,四边形ABDE为矩形,OABOBAODEOED,OAOBOEOD,OBDODB,OAEOEA,ABD+BDE+DEA+EAB360°,ABD+BAE180°,AEBD,OHEODB,EF平分OEH,OEFHEF,EFOEFH90°,EFEF,EFOEFH(ASA),EOEH,FOFH,EHOEOHOBDODB,EOHOBD(AAS),BDOH2OF【点睛】本题考查了图形的综合变换,涉及了三角形全等的判定与性质、平行四边形的判定与性质等,准确识图,
28、熟练掌握和灵活运用相关知识是解题的关键24.在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B(1)求该抛物线的函数表达式(2)当球运动到点C时被东东抢到,CDx轴于点D,CD2.6m求OD的长东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3)东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h12(t0.5)2+2.7(0t1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起
29、跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同)东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计)【答案】(1)y2(x0.4)2+3.32;(2)1m;能,【解析】【分析】(1)设ya(x0.4)2+3.32(a0),将A(0,3)代入求解即可得出答案;(2)把y2.6代入y2(x0.4)2+3.32,解方程求出x,即可得出OD1m;东东在点D跳起传球与小戴在点F处拦截的示意图如图2,设MDh1,NFh2,当点M,N,E三点共线时,过点E作EGMD于点G,交NF于点H,过点N作NPMD于点P
30、,证明MPNNEH,得出,则NH5MP分不同情况:()当0t0.3时,()当0.3t0.65时,()当0.65t1时,分别求出t的范围可得出答案【详解】解:(1)设ya(x0.4)2+3.32(a0),把x0,y3代入,解得a2,抛物线的函数表达式为y2(x0.4)2+3.32(2)把y2.6代入y2(x0.4)2+3.32,化简得(x0.4)20.36,解得x10.2(舍去),x21,OD1m东东的直线传球能越过小戴的拦截传到点E由图1可得,当0t0.3时,h22.2当0.3t1.3时,h22(t0.8)2+2.7当h1h20时,t0.65,东东在点D跳起传球与小戴在点F处拦截的示意图如图2
31、,设MDh1,NFh2,当点M,N,E三点共线时,过点E作EGMD于点G,交NF于点H,过点N作NPMD于点P,MDNF,PNEG,MHEN,MNPNEH,MPNNEH,PN0.5,HE2.5,NH5MP()当0t0.3时,MP2(t0.5)2+2.72.22(t0.5)2+0.5,NH2.21.30.952(t0.5)2+0.50.9,整理得(t0.5)20.16,解得(舍去),当0t0.3时,MP随t的增大而增大,()当0.3t0.65时,MPMDNF2(t0.5)2+2.72(t0.8)2+2.71.2t+0.78,NHNFHF2(t0.8)2+2.71.32(t0.8)2+1.4,2(t0.8)2+1.45×(1.2t+0.78),整理得t24.6t+1.890,解得,(舍去),当0.3t0.65时,MP随t的增大而减小,()当0.65t1时,h1h2,不可能给上所述,东东在起跳后传球的时间范围为【点睛】本题是二次函数的综合题,主要考查二次函数的性质,二次函数图象上点的坐标特征,二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式以及能将实际问题转化为二次函数问题求解