2021年河北省中考数学真题试卷 解析版.doc

上传人:秦** 文档编号:5147491 上传时间:2021-12-08 格式:DOC 页数:39 大小:608.07KB
返回 下载 相关 举报
2021年河北省中考数学真题试卷 解析版.doc_第1页
第1页 / 共39页
2021年河北省中考数学真题试卷 解析版.doc_第2页
第2页 / 共39页
点击查看更多>>
资源描述

《2021年河北省中考数学真题试卷 解析版.doc》由会员分享,可在线阅读,更多相关《2021年河北省中考数学真题试卷 解析版.doc(39页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2021年河北省中考数学试卷一、选择题(本大题有16个小题,共42分。110小题各3分,1116小题各2分。在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()AaBbCcDd2不一定相等的一组是()Aa+b与b+aB3a与a+a+aCa3与aaaD3(a+b)与3a+b3已知ab,则一定有4a4b,“”中应填的符号是()ABCD4与结果相同的是()A32+1B3+21C3+2+1D3215能与()相加得0的是()AB+C+D+6一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是

2、()AA代BB代CC代DB代7如图1,ABCD中,ADAB,ABC为锐角要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()A甲、乙、丙都是B只有甲、乙才是C只有甲、丙才是D只有乙、丙才是8图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB()A1cmB2cmC3cmD4cm9若取1.442,计算398的结果是()A100B144.2C144.2D0.0144210如图,点O为正六边形ABCDEF对角线FD上一点,SAFO8,SCDO2,则S正六边边ABCDEF的值是()A20B30C40D随点O位置而变化1

3、1(2分)如图,将数轴上6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是()Aa30B|a1|a4|Ca1+a2+a3+a4+a50Da2+a5012(2分)如图,直线l,m相交于点OP为这两直线外一点,且OP2.8若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A0B5C6D713(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和已知:如图,ACD是ABC的外角求证:ACDA+B证法1:如图,A+B+ACB180°(三角形内角和定理),又ACD+ACB180°(平角定义),ACD+AC

4、BA+B+ACB(等量代换)ACDA+B(等式性质)证法2:如图,A76°,B59°,且ACD135°(量角器测量所得)又135°76°+59°(计算所得)ACDA+B(等量代换)下列说法正确的是()A证法1还需证明其他形状的三角形,该定理的证明才完整B证法1用严谨的推理证明了该定理C证法2用特殊到一般法证明了该定理D证法2只要测量够一百个三角形进行验证,就能证明该定理14(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列)条形图不小心被撕了一块,图2中“()”应填的颜色是()A蓝B粉

5、C黄D红15(2分)由()值的正负可以比较A与的大小,下列正确的是()A当c2时,AB当c0时,AC当c2时,AD当c0时,A16(2分)如图,等腰AOB中,顶角AOB40°,用尺规按到的步骤操作:以O为圆心,OA为半径画圆;在O上任取一点P(不与点A,B重合),连接AP;作AB的垂直平分线与O交于M,N;作AP的垂直平分线与O交于E,F结论:顺次连接M,E,N,F四点必能得到矩形;结论:O上只有唯一的点P,使得S扇形FOMS扇形AOB对于结论和,下列判断正确的是()A和都对B和都不对C不对对D对不对二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17(4分)现有甲

6、、乙、丙三种不同的矩形纸片(边长如图)(1)取甲、乙纸片各1块,其面积和为 ;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片 块18(4分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且A,B,E保持不变为了舒适,需调整D的大小,使EFD110°,则图中D应 (填“增加”或“减少”) 度19(4分)用绘图软件绘制双曲线m:y与动直线l:ya,且交于一点,图1为a8时的视窗情形(1)当a15时,l与m的交点坐标为 ;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O始终在视窗中心例如,为在视窗中看到(1)中的交点,可将

7、图1中坐标系的单位长度变为原来的,其可视范围就由15x15及10y10变成了30x30及20y20(如图2)当a1.2和a1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的,则整数k 三、解答题(本大题有7个小题,共66分。解答应写出文字说明、证明过程或演算步骤)20(8分)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本现购进m本甲种书和n本乙种书,共付款Q元(1)用含m,n的代数式表示Q;(2)若共购进5×104本甲种书及3×103本乙种书,用科学记数法表示Q的值21(9分)已知训练场球

8、筐中有A、B两种品牌的乒乓球共101个,设A品牌乒乓球有x个(1)淇淇说:“筐里B品牌球是A品牌球的两倍”嘉嘉根据她的说法列出了方程:101x2x请用嘉嘉所列方程分析淇淇的说法是否正确;(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法说明A品牌球最多有几个22(9分)某博物馆展厅的俯视示意图如图1所示嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同(1)求嘉淇走到十字道口A向北走的概率;(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大23(9分)如图是某机场监控屏显示两飞机的飞行图象

9、,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C(10,3)处(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少注:(1)及(2)中不必写s的取值范围24(9分)如图,O的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为An(n为112的

10、整数),过点A7作O的切线交A1A11延长线于点P(1)通过计算比较直径和劣弧长度哪个更长;(2)连接A7A11,则A7A11和PA1有什么特殊位置关系?请简要说明理由;(3)求切线长PA7的值25(10分)如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO2,在ON上方有五个台阶T1T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴距离OK10从点A处向右上方沿抛物线L:yx2+4x+12发出一个带光的点P(1)求点A的横坐标,且在图中补画出y轴,并直接指出点P会落在哪个台阶上;(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相

11、同的抛物线C,且最大高度为11,求C的解析式,并说明其对称轴是否与台阶T5有交点;(3)在x轴上从左到右有两点D,E,且DE1,从点E向上作EBx轴,且BE2在BDE沿x轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?注:(2)中不必写x的取值范围26(12分)在一平面内,线段AB20,线段BCCDDA10,将这四条线段顺次首尾相接把AB固定,让AD绕点A从AB开始逆时针旋转角(0°)到某一位置时,BC,CD将会跟随出现到相应的位置论证:如图1,当ADBC时,设AB与CD交于点O,求证:AO10;发现:当旋转角60&#

12、176;时,ADC的度数可能是多少?尝试:取线段CD的中点M,当点M与点B距离最大时,求点M到AB的距离;拓展:如图2,设点D与B的距离为d,若BCD的平分线所在直线交AB于点P,直接写出BP的长(用含d的式子表示);当点C在AB下方,且AD与CD垂直时,直接写出a的余弦值2021年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分。110小题各3分,1116小题各2分。在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()AaBbCcDd【分析】利用直尺画出遮挡的部分

13、即可得出结论【解答】解:利用直尺画出图形如下:可以看出线段a与m在一条直线上故答案为:a故选:A2不一定相等的一组是()Aa+b与b+aB3a与a+a+aCa3与aaaD3(a+b)与3a+b【分析】A:根据加法交换律进行计算即可得出答案;B:根据整式的加法法则合并同类项进行计算即可得出答案;C:根据同底数幂乘法法则进行计算即可得出答案;D:根据单项式乘以多项式法则进行计算即可得出答案【解答】解:A:因为a+bb+a,所以A选项一定相等;B:因为a+a+a3a,所以B选项一定相等;C:因为aaaa3,所以C选项一定相等;D:因为3(a+b)3a+3b,所以3(a+b)与3a+b不一定相等故选:

14、D3已知ab,则一定有4a4b,“”中应填的符号是()ABCD【分析】根据不等式的性质:不等式两边同时乘以负数,不等号的方向改变,即可选出答案【解答】解:根据不等式的性质,不等式两边同时乘以负数,不等号的方向改变ab,4a4b故选:B4与结果相同的是()A32+1B3+21C3+2+1D321【分析】化简2,再逐个选项判断即可【解答】解:2,32+12,故A符合题意;3+214,故B不符合题意;3+2+16,故C不符合题意;3210,故D不符合题意故选:A5能与()相加得0的是()AB+C+D+【分析】与()相加得0的是他的相反数,化简求相反数即可【解答】解:()+,与其相加得0的是+的相反数

15、+的相反数为+,故选:C6一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()AA代BB代CC代DB代【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,骰子相对两面的点数之和为7,A代表的点数是6,B代表的点数是5,C代表的点数是4故选:A7如图1,ABCD中,ADAB,ABC为锐角要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()A甲、乙、丙

16、都是B只有甲、乙才是C只有甲、丙才是D只有乙、丙才是【分析】方案甲,连接AC,由平行四边形的性质得OBOD,OAOC,则NOOM,得四边形ANCM为平行四边形,方案甲正确;方案乙:证ABNCDM(AAS),得ANCM,再由ANCM,得四边形ANCM为平行四边形,方案乙正确;方案丙:证ABNCDM(ASA),得ANCM,ANBCMD,则ANMCMN,证出ANCM,得四边形ANCM为平行四边形,方案丙正确【解答】解:方案甲中,连接AC,如图所示:四边形ABCD是平行四边形,O为BD的中点,OBOD,OAOC,BNNO,OMMD,NOOM,四边形ANCM为平行四边形,方案甲正确;方案乙中:四边形AB

17、CD是平行四边形,ABCD,ABCD,ABNCDM,ANB,CMBD,ANCM,ANBCMD,在ABN和CDM中,ABNCDM(AAS),ANCM,又ANCM,四边形ANCM为平行四边形,方案乙正确;方案丙中:四边形ABCD是平行四边形,BADBCD,ABCD,ABCD,ABNCDM,AN平分BAD,CM平分BCD,BANDCM,在ABN和CDM中,ABNCDM(ASA),ANCM,ANBCMD,ANMCMN,ANCM,四边形ANCM为平行四边形,方案丙正确;故选:A8图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB()A1cmB2cmC3cmD4cm【分析】

18、高脚杯前后的两个三角形相似根据相似三角形的判定和性质即可得出结果【解答】解:如图:过O作OMCD,垂足为M,过O作ONAB,垂足为N,CDAB,CDOABO,即相似比为,OM1578,ON1174,AB3,故选:C9若取1.442,计算398的结果是()A100B144.2C144.2D0.01442【分析】根据立方根的概念直接代入式子进行计算可得答案【解答】解:取1.442,原式×(1398)1.442×(100)144.2故选:B10如图,点O为正六边形ABCDEF对角线FD上一点,SAFO8,SCDO2,则S正六边边ABCDEF的值是()A20B30C40D随点O位置

19、而变化【分析】正六边形ABCDEF的面积S矩形AFDC+SEFD+SABC,由正六边形每个边相等,每个角相等可得FDAF,过E作FD垂线,垂足为M,利用解直角三角形可得FED的高,即可求出正六边形的面积【解答】解:设正六边形ABCDEF的边长为x,过E作FD的垂线,垂足为M,连接AC,FED120°,FEED,EFDFDE,EDF(180°FED)30°,正六边形ABCDEF的每个角为120°CDF120°EDF90°同理AFDFACACD90°,四边形AFDC为矩形,SAFOFO×AF,SCDOOD×C

20、D,在正六边形ABCDEF中,AFCD,SAFO+SCDOFO×AF+OD×CD(FO+OD)×AFFD×AF10,FD×AF20,DMcos30°DEx,DF2DMx,EMsin30°DE,S正六边形ABCDEFS矩形AFDC+SEFD+SABCAF×FD+2SEFDxx+2×xxx2+x220+1030,故选:B11(2分)如图,将数轴上6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是()Aa30B|a1|a4|Ca1+a2+a3+a4+a50Da2+a

21、50【分析】先计算出6与6两点间的线段的长度为12,再求出六等分后每个等分的线段的长度为2,从而求出a1,a2,a3,a4,a5表示的数,然后判断各选项即可【解答】解:6与6两点间的线段的长度6(6)12,六等分后每个等分的线段的长度12÷62,a1,a2,a3,a4,a5表示的数为:4,2,0,2,4,A选项,a36+2×30,故该选项错误;B选项,|4|2,故该选项错误;C选项,4+(2)+0+2+40,故该选项正确;D选项,2+420,故该选项错误;故选:C12(2分)如图,直线l,m相交于点OP为这两直线外一点,且OP2.8若点P关于直线l,m的对称点分别是点P1,

22、P2,则P1,P2之间的距离可能是()A0B5C6D7【分析】由对称得OP1OP2.8,OPOP22.8,再根据三角形任意两边之和大于第三边,即可得出结果【解答】解:连接OP1,OP2,P1P2,点P关于直线l,m的对称点分别是点P1,P2,OP1OP2.8,OPOP22.8,OP1+OP2P1P2,P1P25.6,故选:B13(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和已知:如图,ACD是ABC的外角求证:ACDA+B证法1:如图,A+B+ACB180°(三角形内角和定理),又ACD+ACB180°(平角定义),ACD+ACBA+B+ACB(等量代换)ACD

23、A+B(等式性质)证法2:如图,A76°,B59°,且ACD135°(量角器测量所得)又135°76°+59°(计算所得)ACDA+B(等量代换)下列说法正确的是()A证法1还需证明其他形状的三角形,该定理的证明才完整B证法1用严谨的推理证明了该定理C证法2用特殊到一般法证明了该定理D证法2只要测量够一百个三角形进行验证,就能证明该定理【分析】依据定理证明的一般步骤进行分析判断即可得出结论【解答】解:证法1按照定理证明的一般步骤,从已知出发经过严谨的推理论证,得出结论的正确,具有一般性,无需再证明其他形状的三角形,A的说法不正确,不符

24、合题意;证法1按照定理证明的一般步骤,从已知出发经过严谨的推理论证,得出结论的正确,B的说法正确,符合题意;定理的证明必须经过严谨的推理论证,不能用特殊情形来说明,C的说法不正确,不符合题意;定理的证明必须经过严谨的推理论证,与测量次解答数的多少无关,D的说法不正确,不符合题意;综上,B的说法正确故选:B14(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列)条形图不小心被撕了一块,图2中“()”应填的颜色是()A蓝B粉C黄D红【分析】根据柱的高度从高到低排列的和扇形所占的百分比得出蓝色是5,所占的百分比是10%,求出调查的总人数,用16除以总

25、人数得出所占的百分比,从而排除是红色,再根据红色所占的百分比求出喜欢红色的人数,再用总人数减去其他人数,求出另一组的人数,再根据柱的高度从高到低排列,从而得出答案【解答】解:根据题意得:5÷10%50(人),16÷50%32%,则喜欢红色的人数是:50×28%14(人),501651415(人),柱的高度从高到低排列,图2中“()”应填的颜色是红色故选:D15(2分)由()值的正负可以比较A与的大小,下列正确的是()A当c2时,AB当c0时,AC当c2时,AD当c0时,A【分析】将c2和0分别代入A中计算求值即可判断出A,B的对错;当c2和c0时计算的正负,即可判

26、断出C,D的对错【解答】解:A选项,当c2时,A,故该选项不符合题意;B选项,当c0时,A,故该选项不符合题意;C选项,c2,2+c0,c0,2(2+c)0,0,A,故该选项符合题意;D选项,当c0时,2(2+c)的正负无法确定,A与的大小就无法确定,故该选项不符合题意;故选:C16(2分)如图,等腰AOB中,顶角AOB40°,用尺规按到的步骤操作:以O为圆心,OA为半径画圆;在O上任取一点P(不与点A,B重合),连接AP;作AB的垂直平分线与O交于M,N;作AP的垂直平分线与O交于E,F结论:顺次连接M,E,N,F四点必能得到矩形;结论:O上只有唯一的点P,使得S扇形FOMS扇形A

27、OB对于结论和,下列判断正确的是()A和都对B和都不对C不对对D对不对【分析】如图,连接EM,EN,MFNF根据矩形的判定证明四边形MENF是矩形,再说明MOFAOB,可知()错误【解答】解:如图,连接EM,EN,MFNFOMON,OEOF,四边形MENF是平行四边形,EFMN,四边形MENF是矩形,故()正确,观察图象可知MOFAOB,S扇形FOMS扇形AOB,故()错误,故选:D二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图)(1)取甲、乙纸片各1块,其面积和为 a2+b2;(2)嘉嘉要用这三种纸片紧密拼接成一个大正

28、方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片 4块【分析】(1)由图可知:一块甲种纸片面积为a2,一块乙种纸片的面积为b2,一块丙种纸片面积为ab,即可求解;(2)利用完全平方公式可求解【解答】解:(1)由图可知:一块甲种纸片面积为a2,一块乙种纸片的面积为b2,一块丙种纸片面积为ab,取甲、乙纸片各1块,其面积和为a2+b2,故答案为:a2+b2;(2)设取丙种纸片x块才能用它们拼成一个新的正方形,a2+4b2+xab是一个完全平方式,x为4,故答案为:418(4分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且A,B,E保持不变为了舒适,需调整D的大小,使EFD110&#

29、176;,则图中D应 减小(填“增加”或“减少”) 10度【分析】延长EF,交CD于点 G,依据三角形的内角和定理可求ACB,根据对顶角相等可得DCE,再由三角形内角和定理的推论得到DGF的度数;利用EFD110°,和三角形的外角的性质可得D的度数,从而得出结论【解答】解:延长EF,交CD于点G,如图:ACB180°50°60°70°,ECDACB70°DGFDCE+E,DGF70°+30°100°EFD110°,EFDDGF+D,D10°而图中D20°,D应减小10

30、6;故答案为:减小,1019(4分)用绘图软件绘制双曲线m:y与动直线l:ya,且交于一点,图1为a8时的视窗情形(1)当a15时,l与m的交点坐标为 (4,15);(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O始终在视窗中心例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的,其可视范围就由15x15及10y10变成了30x30及20y20(如图2)当a1.2和a1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的,则整数k4【分析】(1)a15时,y15,解得:,即l与m的交点坐标为 (4,1

31、5);(2)由得A(50,1.2),由得B(40,1.5),为能看到横坐标是50的点,需要将图1中坐标系的单位长度至少变为原来的,即可得整数k4【解答】解:(1)a15时,y15,由得:,故答案为:(4,15);(2)由得,A(50,1.2),由得,B(40,1.5),为能看到m在A(50,1.2)和B(40,1.5)之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的,整数k4故答案为:4三、解答题(本大题有7个小题,共66分。解答应写出文字说明、证明过程或演算步骤)20(8分)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本现购进m本甲种书和n本乙种书,共付款Q元

32、(1)用含m,n的代数式表示Q;(2)若共购进5×104本甲种书及3×103本乙种书,用科学记数法表示Q的值【分析】(1)分析题目,弄懂题意即可根据题意列出代数式;(2)根据(1)式的代数式将数字代入,再用科学记数法表示出即可【解答】(1)由题意可得:Q4m+10n;(2)将m5×104,n3×103代入(1)式得:Q4×5×104+10×3×1032.3×10521(9分)已知训练场球筐中有A、B两种品牌的乒乓球共101个,设A品牌乒乓球有x个(1)淇淇说:“筐里B品牌球是A品牌球的两倍”嘉嘉根据她的说

33、法列出了方程:101x2x请用嘉嘉所列方程分析淇淇的说法是否正确;(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法说明A品牌球最多有几个【分析】(1)解嘉嘉所列的方程可得出x的值,由x的值不为整数,即可得出淇淇的说法不正确;(2)设A品牌乒乓球有x个,则B品牌乒乓球有(101x)个,根据B品牌球比A品牌球至少多28个,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再取其中的最大整数值即可得出结论【解答】解:(1)嘉嘉所列方程为101x2x,解得:x33,又x为整数,x33不合题意,淇淇的说法不正确(2)设A品牌乒乓球有x个,则B品牌乒乓球有(101x)个,

34、依题意得:101xx28,解得:x36,又x为整数,x可取的最大值为36答:A品牌球最多有36个22(9分)某博物馆展厅的俯视示意图如图1所示嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同(1)求嘉淇走到十字道口A向北走的概率;(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大【分析】(1)直接由概率公式求解即可;(2)补全树状图,共有9种等可能的结果,嘉淇经过两个十字道口后向西参观的结果有3种,向南参观的结果有2种,向北参观的结果有2种,向东参观的结果有2种,由概率公式求解即可【解答】解:(1)嘉淇走到十字

35、道口A向北走的概率为;(2)补全树状图如下:共有9种等可能的结果,嘉淇经过两个十字道口后向西参观的结果有3种,向南参观的结果有2种,向北参观的结果有2种,向东参观的结果有2种,向西参观的概率为,向南参观的概率向北参观的概率向东参观的概率,向西参观的概率大23(9分)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C(10,3)处(1)求

36、OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少注:(1)及(2)中不必写s的取值范围【分析】(1)由爬升角度为45°,可知OA上的点的横纵坐标相同,由此得到点A坐标,用待定系数法OA解析式可求;利用2号试飞机一直保持在1号机的正下方,可知它们的飞行的时间和飞行的水平距离相同,由此可求爬升速度;(2)设BC的解析式为hms+n,由题意将B,C坐标代入即可求得;令h0求得s,即可得到结论;(3)PQ不超过3km,得到5h3,利用(1)(2)中的解析式得出关于s的不

37、等式组,确定s的取值范围,得出了两机距离PQ不超过3km的飞行的水平距离,再除以1号飞机的飞行速度,结论可得【解答】解:(1)2号飞机爬升角度为45°,OA上的点的横纵坐标相同A(4,4)设OA的解析式为:hks,4k4k1OA的解析式为:hs2号试飞机一直保持在1号机的正下方,它们的飞行的时间和飞行的水平距离相同2号机的爬升到A处时水平方向上移动了4km,爬升高度为4km,又1号机的飞行速度为3km/min,2号机的爬升速度为:4÷3km/min(2)设BC的解析式为hms+n,由题意:B(7,4),解得:BC的解析式为h令h0,则s19预计2号机着陆点的坐标为(19,0

38、)(3)PQ不超过3km,5h3,解得:2s13两机距离PQ不超过3km的时长为:(132)÷3min24(9分)如图,O的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为An(n为112的整数),过点A7作O的切线交A1A11延长线于点P(1)通过计算比较直径和劣弧长度哪个更长;(2)连接A7A11,则A7A11和PA1有什么特殊位置关系?请简要说明理由;(3)求切线长PA7的值【分析】(1)利用弧长公式求解即可(2)利用圆周角定理证明即可(3)解直角三角形求出PA7即可【解答】解:(1)由题意,A7OA11120°,的长412,比直径长(2)结论:PA1A7A11

39、理由:连接A1A7A1A7是O的直径,A7A11A190°,PA1A7A11(3)PA7是O的切线,PA7A1A7,PA7A190°,PA1A760°,A1A712,PA7A1A7tan60°1225(10分)如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO2,在ON上方有五个台阶T1T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴距离OK10从点A处向右上方沿抛物线L:yx2+4x+12发出一个带光的点P(1)求点A的横坐标,且在图中补画出y轴,并直接指出点P会落在哪个台阶上;(2)当点P落到

40、台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求C的解析式,并说明其对称轴是否与台阶T5有交点;(3)在x轴上从左到右有两点D,E,且DE1,从点E向上作EBx轴,且BE2在BDE沿x轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?注:(2)中不必写x的取值范围【分析】(1)由题意台阶T4的左边端点(4.5,7),右边端点的坐标(6,7),求出x4.5,6时的y的值,即可判断(2)由题意抛物线C:yx2+bx+c,经过R(5,7),最高点的纵坐标为11,构建方程组求出b,c,可得结论(3)求出抛物线与

41、X轴的交点,以及y2时,点的坐标,判断出两种特殊位置点B的横坐标的值,可得结论【解答】解:(1)图形如图所示,由题意台级T4左边的端点坐标(4.5,7),右边的端点(6,7),对于抛物线yx2+4x+12,令y0,x24x120,解得x2或6,A(2,0),点A的横坐标为2,当x4.5时,y9.757,当x6时,y07,当y7时,7x2+4x+12,解得x1或5,抛物线与台级T4有交点,设交点为R(5,7),点P会落在哪个台阶T4上(2)由题意抛物线C:yx2+bx+c,经过R(5,7),最高点的纵坐标为11,解得或(舍弃),抛物线C的解析式为yx2+14x38,对称轴x7,台阶T5的左边的端

42、点(6,6),右边的端点为(7.5,6),抛物线C的对称轴与台阶T5有交点(3)对于抛物线C:yx2+14x38,令y0,得到x214x+380,解得x7±,抛物线C交x轴的正半轴于(7+,0),当y2时,2x2+14x38,解得x4或40,抛物线经过(10,2),RtBDE中,DEB90°,DE1,BE2,当点D与(7+,0)重合时,点B的横坐标的值最大,最大值为8+,当点B与(10,2)重合时,点B的横坐标最小,最小值为10,点B横坐标的最大值比最小值大126(12分)在一平面内,线段AB20,线段BCCDDA10,将这四条线段顺次首尾相接把AB固定,让AD绕点A从AB开始逆时针旋转角(0°)到某一位置时,BC,CD将会跟随出现到相应的位置论证:如图1,当ADBC时,设AB与CD交于点O,求证:AO10;发现:当旋转角60°时,ADC的度数可能是多少?尝试:取线段CD的中点M,当点M与点B距离最大时,求点M到AB的距离;拓展:如图2,设点D与B的距离为d,若BCD的平分线所在直线交AB于点P,直接写出BP的长(用含d的式子表示);当点C在AB下方,且AD与CD垂直时,直接写出a的余弦值

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁