《备考2022数学专题20 相似三角形问题(原卷版).docx》由会员分享,可在线阅读,更多相关《备考2022数学专题20 相似三角形问题(原卷版).docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、专题20 相似三角形问题一、比例1成比例线段(简称比例线段):对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。如果作为比例内项的是两条相同的线段,即或a:b=b:c,那么线段b叫做线段a,c的比例中项。2黄金分割:用一点P将一条线段AB分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618。这种分割称为黄金分割,分割点P叫做线段AB的黄金分割点,较长线段叫做较短线段与全线段的比例中项。3平行线分线段成比例定理:三条平行线截两条直线,所得的对应线
2、段成比例。 4两条直线被一组平行线所截,所得的对应线段成比例。5平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。二、相似、相似三角形及其基本的理论1. 相似:相同形状的图形叫相似图形。相似图形强调图形形状相同,与它们的位置、大小无关。2相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似多边形对应边的比叫做相似比。3三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。(3)两个三角形相似的判定定理判定定理1:如果一个三角形的两个角与另
3、一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。4直角三角形相似判定定理:以上各种判定方法均适用定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。5相似
4、三角形的性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。【例题1】(2020河北)在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A四边形NPMQB四边形NPMRC四边形NHMQD四边形NHMR【对点练习】(2019广西北海)如图,在平面直角坐标系中,ABC的三个顶点分别为A(1,1),B(4,1),C(2,3)(1)画出ABC关于点O成中心对称的A1B1C1;(2)以点A为位似中心,将ABC放大为原来的2倍得到AB2C2,请在第
5、二象限内画出AB2C2;(3)直接写出以点 A1,B1,C1为顶点,以 A1B1为的平行四边形的第四个顶点D的坐标【例题2】(2019·广西贺州)如图,在ABC中,D,E分别是AB,AC边上的点,DEBC,若AD2,AB3,DE4,则BC等于()A5B6C7D8【对点练习】(2019年内蒙古赤峰市)如图,D、E分别是ABC边AB,AC上的点,ADEACB,若AD2,AB6,AC4,则AE的长是()A1B2C3D4【例题3】(2020山东泰安模拟)如图,矩形ABCD中,AB3,BC12,E为AD中点,F为AB上一点,将AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是【对
6、点练习】2019黑龙江省龙东地区)一张直角三角形纸片ABC,ACB90°,AB10,AC6,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当BDE是直角三角形时,则CD的长为_【例题4】(2020杭州)如图,在ABC中,点D,E,F分别在AB,BC,AC边上,DEAC,EFAB(1)求证:BDEEFC(2)设AFFC=12,若BC12,求线段BE的长;若EFC的面积是20,求ABC的面积【对点练习】(2019四川省凉山州)如图,ABDBCD90°,DB平分ADC,过点B作BMCD交AD于M连接CM交DB于N(1)求证:BD2ADCD;(2)
7、若CD6,AD8,求MN的长一、选择题1(2020重庆)如图,ABC与DEF位似,点O为位似中心已知OA:OD1:2,则ABC与DEF的面积比为()A1:2B1:3C1:4D1:52.(2020浙江绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm则投影三角板的对应边长为()A20cmB10cmC8cmD3.2cm3(2020遂宁)如图,在平行四边形ABCD中,ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF2FD,则BEEG的值为()A12B13C23D344(2020遂宁)如图,在正方形ABCD中,点E是边BC的中点,连接
8、AE、DE,分别交BD、AC于点P、Q,过点P作PFAE交CB的延长线于F,下列结论:AED+EAC+EDB90°,APFP,AE=102AO,若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,CEEFEQDE其中正确的结论有()A5个B4个C3个D2个5(2020潍坊)如图,点E是ABCD的边AD上的一点,且DEAE=12,连接BE并延长交CD的延长线于点F,若DE3,DF4,则ABCD的周长为()A21B28C34D426(2020天水)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB1.2m,BC12.8m,则建筑物CD的高是(
9、)A17.5mB17mC16.5mD18m7.(2019海南省)如图,在RtABC中,C90°,AB5,BC4点P是边AC上一动点,过点P作PQAB交BC于点Q,D为线段PQ的中点,当BD平分ABC时,AP的长度为()A.BCD二、填空题8(2020郴州)在平面直角坐标系中,将AOB以点O为位似中心,23为位似比作位似变换,得到A1OB1,已知A(2,3),则点A1的坐标是 9(2020乐山)把两个含30°角的直角三角板按如图所示拼接在一起,点E为AD的中点,连结BE交AC于点F则AFAC= 10(2020绥化)在平面直角坐标系中,ABC和A1B1C1的相似比等于12,并且
10、是关于原点O的位似图形,若点A的坐标为(2,4),则其对应点A1的坐标是 三、解答题11(2020泰安)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,ACB与ECD恰好为对顶角,ABCCDE90°,连接BD,ABBD,点F是线段CE上一点探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2),小明经过探究,得到结论:BDDF你认为此结论是否成立? (填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BDDF,则点F为线段CE的中点请判断此结论是否成立若成立,请写出证明过程;若不成立,请说明理由问题解决:(3)若AB6,CE
11、9,求AD的长12(2020达州)如图,在梯形ABCD中,ABCD,B90°,AB6cm,CD2cmP为线段BC上的一动点,且和B、C不重合,连接PA,过点P作PEPA交射线CD于点E聪聪根据学习函数的经验,对这个问题进行了研究:(1)通过推理,他发现ABPPCE,请你帮他完成证明(2)利用几何画板,他改变BC的长度,运动点P,得到不同位置时,CE、BP的长度的对应值:当BC6cm时,得表1:BP/cm12345CE/cm0.831.331.501.330.83当BC8cm时,得表2:BP/cm1234567CE/cm1.172.002.502.672.502.001.17这说明,点
12、P在线段BC上运动时,要保证点E总在线段CD上,BC的长度应有一定的限制填空:根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,BP的长度为自变量,EC的长度为因变量;设BCmcm,当点P在线段BC上运动时,点E总在线段CD上,求m的取值范围13(2020枣庄)在ABC中,ACB90°,CD是中线,ACBC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N(1)如图1,若CECF,求证:DEDF;(2)如图2,在EDF绕点D旋转的过程中,试证明CD2CECF恒成立;(3)若C
13、D2,CF=2,求DN的长14(2020上海)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BEDF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H(1)求证:BECBCH;(2)如果BE2ABAE,求证:AGDF15(2020甘孜州)如图,AB是O的直径,C为O上一点,AD和过点C的切线互相垂直,垂足为D(1)求证:CADCAB;(2)若ADAB=23,AC26,求CD的长16(2020宁波)【基础巩固】(1)如图1,在ABC中,D为AB上一点,ACDB求证:AC2ADAB【尝试应用】(2)如图2,在ABCD中,E为BC上一点,F为CD延长线上一点,BFEA若BF4,BE3,求AD的长【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是ABC内一点,EFAC,AC2EF,EDF=12BAD,AE2,DF5,求菱形ABCD的边长17.(2019湖北省荆门市)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC2m,BD2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE