2020年电子行业研究报告.docx

上传人:青****9 文档编号:51066671 上传时间:2022-10-17 格式:DOCX 页数:45 大小:3.51MB
返回 下载 相关 举报
2020年电子行业研究报告.docx_第1页
第1页 / 共45页
2020年电子行业研究报告.docx_第2页
第2页 / 共45页
点击查看更多>>
资源描述

《2020年电子行业研究报告.docx》由会员分享,可在线阅读,更多相关《2020年电子行业研究报告.docx(45页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2020年电子行业研究报告导语从宏观层面来看,预计 2021 年全球疫情将得到有效控制,带来经济复苏,驱动 全球半导体行业景气向上,国际半导体大厂纷纷上调未来业绩指引。需求侧来看,包括新能源 车、新能源发电、5G、云计算等在内的下游技术创新、产品创新持续推动半导体行业发展。一、 行业估值处于历史中位,高盈利增速持续消化估值二、 消费电子:手机终端代工往内地转移,5G 换机潮带 动销量增长(一) 手机:大陆实现从零部件向终端代工升级(二) 手机:5G 换机潮拉动手机销量上升(三) 手机-射频:5G 时代射频前端创新提升手机 ASP1. 4G 到 5G 的际代更迭,解锁了新的频段2G-4G 主要使

2、用 600MHz-3GHz 频段,5G 拓展至 Sub-6GHz 和毫米波段。5G 解锁的两 个频段中,FR1 频段共 6GHz 带宽可用(注:600MHz-3GHz 大部分已被 1G-4G 占用), FR2 频 段共 249GHz 宽带可用(注:毫米波段频率范围 3-300GHz,剔除两个无法用于通讯领域的特殊 频段,氧气吸收段 57-64GHz、水蒸气吸收段 164-200GHz)。而更广阔的频谱资源,意味着更 大带宽,与 4G 单载波最大 20MHz 的带宽相比(通过载波聚合(CA,Carrier Aggregation)可 达到 40/60MHz),5G 最大带宽提升至 100MHz。

3、2. 5G 新增频段,需要增加相应的射频前端器件与之配套因需要向下兼容旧频段,通信际代更迭意味着覆盖频段数提升。简单来说,一台 5G 手机 如要保证在全球范围内、各运营商网络下皆可使用,需要通过多模多频实现无线通讯频段的全 面覆盖,包括(1)纵向维度:向下兼容 2/3/4G 频段,(2)横向维度:兼容全球各国运营商不 同频段。我们以 iPhone 为例,可以看到当通讯时代由 3G 向 4G 演进时,手机支持频段数由 3G 时代约 10 个频段,大幅提升至 4G 时代约 40 个频段。初代 5G 手机普遍支持 5 个以上 5G 频段,最多可支持 10 个 5G 频段。我们统计了目前主 流的初代

4、5G 手机,发现除都支持 n41/n78/n79 三个频段外,n1/n3/n77 也覆盖较多,OPPO 高 端机 Find X2 pro 甚至支持 10 个 5G 频段。此外,根据移动相关建议,5G 手机至少需要新增 n78/n79 两个频段,推荐增加 n1/n3/n41 三个频段。而根据最新的 3GPP TS 38.101 版本,在 5G NR 标准下 FR1 频段共计 45 个频段,目前全球范围内 n78/n79 使用最为广泛。5G 新增频段,需要增加射频前端器件与之配套,从而提升整机 BOM 与 ASP。目前主流 的 4G 射频前端架构,多采用 TRX(接收通路+发射通路)+DRX(分集

5、接收)实现 1T2R 模 式,且 TRX 和 DRX 通路都由集成模块实现。简单说就是按照频率高低,将各频段集成入六 到八个模组中,即 GSM/LB/MB/HB PAMID 模组和 GSM/LB/MB/HB Diversity FEM 模组。而 5G 时代,则至少需要新增 n78/n79 两个频段对应的通路,在 NSA 标准下是 1T4R,在 SA 标 准下是 2T4R。根据我们预测 2022 年射频前端市场空间达 236 亿美元,未来 3 年 CAGR 达到 18%。上 一轮射频前端市场起步起始于 4G 时代,全网通需求使得覆盖频段数大幅增加,常用频段数由 3G 时代约 10 个频段提升至

6、4G 时代约 40 个频段,大幅拉动射频前端增长,市场价值 2012- 2019 年 CAGR 高达 15%。2020 年 5G 时代正式开启,我们预计 2022 年射频前端市场空间将 达到 236 亿美元, 2019-2022 年 CAGR 达 18%,其中增量主要来自 5G 新增频段对应的市场 空间(即 5G 手机剔除 2/3/4 频段),其为 86 亿美元。(四) 手机-光学:多摄渗透+规格提升,价量齐升打开市场空间1. 多摄持续渗透,摄像头行业市场广阔多摄优化拍摄效果,为确定性演进趋势,预测 2023 年手机摄像头模组总空间达 2119 亿元。随拍照要求的提升,单摄受制于手机体积和厚度

7、等因素,已开发至极限。二摄、三摄、四 摄等多摄升级在不增加手机和摄像头厚度情况下满足了不同需求:双摄加强画质和深度测距, 三摄实现焦段的全覆盖,四摄强调 3D 视觉和创新。多摄渗透率不断提高,为确认性趋势。三 摄、四摄模组渗透率不断提升,已成为智能手机标配,2020Q1,双摄、三摄、四摄及以上的占 比分别为 29%、27%、23%。2020Q1 各大主流国产机双摄占比已超过 80%,而华为 P40 Pro+ 搭载超感知徕卡五摄,引领多摄趋势。图像传感器和镜头为摄像模组主要价值构成。摄像头模 组由数个镜片、VCM 音圈马达、间隔环、图像传感器、FPC 等组成。其中,图像传感器、镜 头、音圈马达是

8、高壁垒环节。在价值链构成看,图像传感器约占摄像头模组的 52%,其次是模 组(20%)和光学镜头(19%)。根据苹果个安卓手机的出货量及多摄渗透率,我们测算,2020 年-2023 年苹果手机摄像模组市场空间为 344/358/359/364 亿元,安卓手机摄像模组市场空间为 1404/1663/1715/1755 亿元。由于多摄提高了摄像头模组行业的制造难度,市场份额向龙头集 中,2015-2018 年 TOP5 模组厂份额占比从 28%提升到 41%。2. 创新升级,光学镜头持续高景气像素升级,7P、8P 镜头渗透率不断提升。(1)像素持续升级,预计 2022 年 3200 万像素 以上主

9、摄像头占比达 28%。据 IDC 数据,2019-2020 年手机主摄和前置摄像头的像素升级加 速。40/48MP 已成为主流,64MP 和 108MP 在 2021-2022 年将快速渗透。(2)7P、8P 镜头相继面世,高成像要求驱动摄像头镜片数增长。镜片数量提升能够增强镜头的对比度与解析度、 改善眩光(蓝光玻璃),更好控制像差。6P 镜片数可实现 2400 万/3200 万像素,而 7P 可将这 一数据提高到 3200 万/4800 万。塑料镜头遇到天花板,玻塑混合镜头打开性能瓶颈。智能手机内部空间越来越小,承载的 功能和零组件越来越多,塑料镜片凭借成本低、易批量生产等优势成为智能手机光

10、学镜头的主 流。但随手机摄像头超高像素、大光圈方向升级,塑料镜头在成像清晰度、失真率等光学性能 方面遇到瓶颈。玻璃塑料混合镜头结合了玻璃镜头和塑料镜头的优点,能够减少镜头厚度和失 真率、提高成像清晰度和光圈尺寸,有望在高端旗舰机型主摄中取得应用。潜望式镜头为高倍变焦必经之路,终端大厂率先应用。手机光学变焦要求升级,5X、10X 将成为主流。潜望式镜头在大幅增加摄像头焦距,更好实现光学变焦的同时,保证手机的薄型 外观(OPPO 首创的潜望式结构实现了十倍混合变焦,但与传统方式比节省了 55%的空间)。华为 P20/P30/P30 pro、OPPO Reno 系列手机均已搭载潜望式摄像头,其中华为

11、 P30 pro 实现了 5 倍光学变焦、10 倍混合变焦及 50 倍最大数码变焦。潜望式镜头与常规摄像模组零部件构成 总体一致,需增加镜片数量、棱镜,同时加入马达以实现镜头内部透镜的可移动。其中玻璃转 向棱镜带来的连锁反应、折射透光率和防抖设计为难点,需要更先进的制造工艺。头部供应商 提前布局,随潜望式摄像头的加速渗透,将进一步受益。TOF 镜头加速渗透,预计 2023 年在 3D Sensing 中渗透率达 70%,TOF 手机出货量达 亿部。3D Sensing 主流技术有两种:结构光和 TOF,TOF 在技术和成本上均有优势,为未来 发展方向。(1)技术上:TOF 识别距离较远,识别距

12、离区间在短距离(不足 1m)至长距离 (10m)之间,与光源功率成正比,抗干扰性较好。结构光方案识别距离较近,与照明强度成 正比,易受光照影响。(2)成本上:TOF 比结构光的成本低 5 美元左右。结构光基于 iPhone X 解决方案,由 3 个模块组成(点投影仪、近红外相机、泛光照明+近距离传感器),TOF 解决 方案将 3 个模块集成为一个模块,因此包装、模块组装和其他组件的成本更低。随着华为、三 星等大厂示范作用和在各厂商机型中的进一步下沉,TOF 在 3D Sensing 中渗透率不断提高。由于 TOF 目前仍为较少机型采用,其供应链有待成熟。手机镜头量价齐升,行业集中度高。随摄像头

13、功能持续升级,单个镜头价值上升,并叠加 多摄渗透,手机镜头市场空间的进一步扩大。预测手机镜头总市场空间在 2020-2023 年分别达 107/150/159/163 亿元,19-23 年 CAGR 达 11%。手机镜头中,2015-2018 年行业前四大公司市 场份额均在 60%左右,大立光市场份额保持连年领先。2015-2018 年大立光和舜宇光学镜头市 场份额不断提升,历年份额均在 40%以上。(五) TWS 耳机:用户习惯已被成功培养,渗透率还有较大提升空 间苹果的 AirPods 系列成功培养用户使用 TWS 耳机习惯,安卓系跟进。TWS(True Wireless Stereo)真

14、正无线立体声,这一技术真正地实现了蓝牙左右声道无线分离使用,两只耳机皆可 独立工作。2016 年 AirPods 推出第一代,2019 年 3 月的 AirPods 2 代以及 AirPods Pro 两款发 布,其中 AirPods Pro 推出了通透与主动降噪功能,通过良好的用户体验成功培养起用户使用 TWS 的习惯,引爆市场。安卓系随后跟进:Samsung 自适应双麦克风技术能够让使用者远离 环境背景噪音,这一点和 AirPods Pro 的特点很相似;小米 Air 2 Pro 的耳机和充电盒均支持快 速充电,这一点在使用体验上十分方便;漫步者 Fun Buds 可以开启环境侦听模式,无

15、需摘掉 耳机也能感知周围环境音。目前苹果渗透率约 20%、安卓系渗透率约 7%,距“一手机配一耳机”仍有较大空间。19 年 AirPods 2&AirPods Pro 引爆市场,19 年全市场苹果+安卓合计出货量约 1.3 亿部,同比+%。根据我们测算,目前 AirPods 2016-2019 年累计出货量约 1 亿副,按照 2020 年出货 1 亿副、10 亿苹果手机用户计算,渗透率约 20%;目前 2016-2019 年累计出货量约 1 亿副,按照 2020 年 出货 1.3 亿部、35 亿安卓手机用户计算,渗透率不到 7%;苹果系、安卓系均距“一手机配一 耳机”仍有较大空间。(六) 智能

16、手表:新一代健康信息输入口智能手表,新一代健康信息的输入口。以 2020 年最新发布的 Apple Watch Series 6 为例, 除搭载全天候视网膜屏外,最大的亮点来自于其新增的一系列与健康相关的新功能,包括血样 检测、睡眠追踪、洗手检测、电极式心率传感器等。此外其他品牌的智能手表侧重也不尽相同:小米手表可以监测心率以及压力值,同时全新的“身体能量”模式能够更直观的展示此刻的健 康状况;Fitbit 能够得出睡眠分数;Samsung Galaxy Watch Active 2 可以分析各种运动数据并且 教练功能会提供运动建议;HUAWEI Watch GT 2 Pro 则搭载了全天候血

17、氧饱和度连续监测, 能够实时全面的提供各种健康数据。随着硬软件的提升,智能手表或可成为人手必备的一件医 疗器械产品,通过用户与智能手表的长期接触,为定期体检等提供更为全面的、周期性更长的 数据。智能手表与手机/平板的交互功能、娱乐功能还有待挖掘。由于智能手表屏幕较小,交互 难度较大,预计随着生态的成熟,智能手表、手机和平板之间的交互会更为方便。此外,因智 能手表能够搭载丰富的传感器,或许能够帮助改善 AR 游戏体验。Apple Watch 份额占一半以上,其他品牌包括三星、华为、佳明等。根据 Strategy Analytics 统计,2020Q1 智能手表出货量合计 1.3 亿部,其中苹果

18、7.6 亿部,其他主要玩家还包括华为、 三星、佳明、Fitbit 等。(七) AR/VR:技术突破在即,商业落地可期1. AR/VR 应用场景广泛,市场空间巨大ToC 端,AR/VR 应用包括娱乐活动、辅助生活(如地图)等。(1)ToC 市场上最基础的 应用方向是娱乐:在 VR 游戏和视频中,用户进入虚拟世界,可以改变视角甚至调整观察位置;AR 游戏中,虚拟角色或者景物被叠加在现实场景上。(2)生活的辅助领域,AR 导航是目前 重要的应用方向。2019 年谷歌地图推出 AR 导航功能, 2020 年 4 月华为 AR 地图上线。目前 的 AR 导航主要是基于手机 AR,但是随着 AR 眼镜的技

19、术进步和普及,AR 辅助生活有望得 到更大的发展。ToB 端,AR/VR 有更广阔应用。根据虚拟现实产业推进会发布的2019 年工业虚拟现实 应用场景白皮书,AR/VR 技术在工业生产中应用范围广阔。预计 2023 年 AR/VR 市场规模达 1610 亿美元,2018-23 年 CAGR 为 78%,ToB 市场为 强力驱动。根据 Accenture 和 IDC 的预测,2023 年 AR/VR 市场规模将达到 1610 亿美元。其 中 2023 年 ToC 市场规模为 400 亿美元,2018-2023 年 CAGR 为 69%,占比将从 2020 年的 37% 再下降至 2023 年的

20、25%;2023 年 ToB 市场规模为 1210 亿美元,2018-2023 年 CAGR 为 134%。2. VR 眼镜技术相对成熟,已有大量商业化产品落地VR 眼镜根据结构可以分为 VR 手机盒子、头戴显示器和一体机。处理器、陀螺仪(捕捉 用户的位置和角度信息)、显示器和透镜,是 VR 眼镜的基本结构。现有的 VR 眼镜按结构复 杂程度分为三种:手机盒子只是简单地将手机上的内容折射到人眼中,头戴显示器需要通过数 据线连接 PC/PS4 使用,一体机整合全部结构,可以独立使用。索尼、Oculus、HTC 三足鼎立,一体机和头戴显示器各占半壁江山,设备社交性增强。玩家方面,2019 年 VR

21、 市场索尼、Oculus 和 HTC 三家合计市占率接近 80%;产品类型方面, 一体机和头戴显示器各占据半壁江山,普遍支持 insideout 技术实现 6dof,即通过头盔自带的 摄像头拍摄外部景物实现反向定位。除了基础的运动追踪、空间定位、手柄操控等功能之外,头戴设备投影、多机协作等具备 社交属性的功能被开发了出来。运动追踪、空间追踪和手柄操作是 VR 眼镜采集用户信息的传 统方法。(1)运动追踪:陀螺仪是 VR 眼镜的基本组成部分之一,用来采集用户头部的角度转 动和运动信息。(2)空间定位:是指通过 VR 眼镜自带或者分立的摄像头确定用户的空间位置 信息。(3)手柄操作:手柄也是 VR

22、 眼镜常见的配件,不仅可以通过按键进行操作,还可以采 集用户手部的运动信息。头戴设备投影和多机协作等功能让 VR 眼镜开始具备社交属性。(1) 头戴设备投影:将 VR 设备中的画面投影到幕布或者大屏幕上,让用户之外的其他人看到 VR 设备上的画面。(2)多机协作:多个用户同时使用多台 VR 设备,共同游戏或线上会议。眼球追踪、更高分辨率和轻薄化是未来 VR 终端设备的发展方向。(1)眼球追踪:除了简 化操作、注视点渲染之外,还可以将眼球运动表现在虚拟形象上,增强虚拟协作性。目前,索 尼 Pico Neo 2 和 HTC VIVE Pro 都有支持眼球追踪功能的机型,但是价格相对更高,HTC V

23、IVE Pro EYE 的价格高达 12577 元。(2)分辨率:虽然现有商品的分辨率已经达到 2K4K,但是 PPD(每视场角像素数)仅为 1020,距离视网膜屏 60 PPD 有很大的距离,因此分辨率的提 高仍然是未来发展的方向。(3)轻薄化:目前的 VR 设备重量从 276g 到 695g 不等,仍会对颈 椎产生较大的负担,5G、Micro LED 的发展将会从处理器和屏幕两个方面使 VR 眼镜轻薄化。3. AR 眼镜技术突破在即,大规模商业化应用近在眼前相比 VR 眼镜,AR 眼镜轻薄度要求高、光学结构和算法更复杂。AR 的实现可以通过手 机 AR 和 AR 眼镜两种途径,其中 AR

24、手机对硬件要求低、主要靠软件开发,目前支持 AR 功 能的应用不胜枚举,如手机 AR 游戏宝可梦 GO。AR 眼镜比 VR 眼镜技术难度大:(1)ToC 端,VR 眼镜往往是在室内使用,而 AR 眼镜则有室外活动的需求,使用时间更长、活动范围 广,因此对于轻薄度的要求更高。(2)AR 眼镜光学结构更复杂,要求在不遮挡前方景物的同 时显示影像,目前有离轴反射、Birdbath 和光波导等实现方式。光波导结构中,屏幕的光直接 在镜片中反射进入人眼,可以实现更轻薄的眼镜,现已经比较成熟,成为主流的趋势。(3)为 了实现更逼真的 AR,需要分析现实世界的照明,为虚拟对象绘制光影,并且要求真实景象变 化

25、时虚拟对象的快速移动,需要更复杂的算法解决。AR 也可分为一体机和头戴显示器两种,量产产品在视场角方面和轻薄度方面有待提升。AR 眼镜也分为一体机和头戴显示器:微软公司的 HoloLens 2 为头戴一体机;Magic Leap 1 则 将眼镜和处理器分开,在大小上可以“装进口袋”;RealX 则是单纯的头戴显示器需要连接手 机或 PC 使用。技术方面,最突出的问题是,如何在实现高视场角 FOV 的同时保持轻薄,已 量产的微软、Magic Leap 和 0glasses 的三款眼镜都将视场角设计为 50 度左右,距离人类视场 角 120 度有一定的距离。CES 大量产品展出,有待大规模商业化。

26、而在 2020 年 1 月份的 CES 上,大量还未量产 的 AR 产品推出,高视场角、轻薄、高画质、技术创新的产品比比皆是,展示了 AR 眼镜的最 高技术水平。三、 汽车电子:新能源化、智能化带来汽车电子确定性 增长(一) 新能源化、智能化为汽车发展的两大方向新能源化:核心技术为“三电”,纯电动车为主流,预计 2025 年新能源车销量占比 30%。新能源汽车区别于传统燃油车的核心技术“三电”是电池、电驱动和电控。三类新能源车中,纯 电动车(BEV)为主流,2019 年销量占比 74%,其余市场几乎被插电式混合动力汽车(PHEV) 占用,燃料电池汽车(FCEV)占比不足 1%。2015-201

27、9 年,全球新能源车销量由 55.3 万增长 至 221.0 万,CAGR 达 41.4%。据 EVtank 预测,2025 年全球新能源车销量将达 1200 万辆。智能化:包括传感、决策、执行三层次,最终实现完全自动驾驶,预计 2020-2024 年智能 网联车出货量 CAGR 达 14.5%。智能化和网联化协同发展,智能网联汽车(ICV)的传感、决 策、执行,分别对应人类的感知器官、大脑和手脚。(1)传感系统:基于车载传感器、路侧基 础设施和云平台来获取车辆与环境信息,常用技术包括雷达、摄像头、V2X 通信和精确定位 等。(2)决策系统:通过计算平台实现,包括板级硬件、系统软件、功能软件和

28、应用软件等, 软件部分可通过空中下载技术(OTA)升级。(3)执行系统:对车的制动、转向、灯光等进行 控制,由刹车油门、电子稳定系统、电动助力转向和自动变速器等组成。按照国际汽车工程协 会(SAE)分级,智能化程度从低到高为 L0-L5。L1 辅助驾驶在中高端车型燃油车上已经普遍 应用,而主流观点认为较高级别智能驾驶需要以新能源车为载体。L2 为部分自动驾驶,特斯 拉、比亚迪、蔚来、凯迪拉克等均已实现 L2 级别智能网联车量产上路。L3 为有条件自动驾 驶,部分车企技术上已实现,但法律法规和路侧设施不完善。L4、L5 为高度自动驾驶和完全 自动驾驶,目前未实现。根据 IDC 预测,2020-2

29、024 年全球智能网联汽车出货量分别为 44.4、 58.3、65.9、72.2、76.2 百万辆, CAGR 达 14.5%。(二) 新能源化、智能化带来车电子确定性增长汽车新能源化带动 PCB 增长,预计 2025 年全球车用 PCB 规模达 97.57 亿美元。汽车新 能源化的电控系统为车用 PCB 提供增量:BEV 替代燃油机械控制系统产生替换增量,PHEV 增加一套电控系统产生叠加增量。由于电控系统对 PCB 用量和精密复杂度更高,整体估算, 新能源整车 PCB 用量在 5-8 平米之间,单车 PCB 成本将增加 2000 元左右,远高于传统汽车。据测算,2025 年中国车用 PCB

30、 市场总价值将达到 35.783 亿美元,2019-2025 年 CAGR 达 23.45%。2025 年全球市场的车用 PCB 规模为 97. 57 亿美元。目前,PCB 行业呈现以亚洲,尤 其是中国大陆为制造中心的格局。电池精密结构件用于保证电池包结构完整与机械强度,随新能源车动力锂电池发展而爆 发,预计 2025 年汽车动力电池精密结构件市场规模达 500 亿元。锂电池包装方式分为软包、 圆柱和方形三种,车用动力锂电池采用方形和圆柱形方式,占比约 50%。动力锂电池精密结构 件能保证电池包结构的完整与机械强度,也直接影响着电池的密封性及能量密度,其主要组成 部分为盖板和外壳,约占动力锂电

31、池成本的 15%。新能源汽车带动动力锂电池高速增长,进一 步推动电池结构件的市场增长。据前瞻产业研究院预测,2025 年全球动力锂电池出货量达 660GWh,未来五年 CAGR15.8%。我们以结构件成本 0.15 元/Wh 计,测算得 2025 年全球汽车动力电池精密结构件市场规模 501.75 亿元。由于锂电池精密结构件与下游锂电池电芯行业企 业紧密相关,厂商合作稳定,因此国内动力电池厂商占全球市场份额 61%的强势地位也促进了 国内结构件供应商的发展。中控屏为新能源车标准配置,大屏化、多屏互动与面板升级推升市场,预计 2025 年全球 中控屏市场规模达 2058 亿元。2019 年中控屏

32、渗透率已达 83%,预计 2025 年达 98%。统计市 面新能源车型和传统燃油车,新能源车的中控屏尺寸普遍大于传统燃油车,大屏化为趋势。多 屏互动满足了不同可视化需求,如奥迪 E-tron 纯电版共载了六块显示屏,包括 1 块液晶仪表 盘、2 块中控液晶触控屏、1 块后排空调控制液晶触控屏、前排车窗下方两块 OLED 屏幕以显 示后方实时画面。面板方面,LCD 技术与生产线成熟,市场竞争激烈,供应商利润不断压低, 三星、LGD 等多家公司对 LCD 减产停产。而 OLED 具有响应速度快、耗能更低、柔性显示、 不易碎、视觉无死角等优势,适合车载显示市场,面板升级为大势所趋。根据我们预测,20

33、25 年中国和全球中控屏市场销售额分别为 671 亿元、2058 亿元。车载摄像头需求来源于摄像头多方位拓展,预计 2025 年全球车载摄像头规模 330 亿元。区别于传统车只需倒车后视摄像头,智能网联车摄像头按安装位置分为前视、侧视(环视)、 后视和内置镜头。(1)前视镜头:分为单目和双目两种类型,主要用于行车辅助,比如识别 交通标志、车道、行人和车辆等,使系统得以进一步辅助纠正行驶路线或发出预警。(2)后 视镜头:主要用于泊车辅助。(3)侧视(环视)镜头:除了辅助前视镜头识别交通标志、辅 助后视镜头进行全景泊车外,主要用于盲点监测。(4)内置镜头:主要用于驾驶员疲劳检测。目前车载市场竞争格

34、局中,舜宇光学得益于先发优势,处于行业领先地位。预计 2025 年全球 车载摄像头出货量达 5.86 亿颗,市场规模达 330 亿元。车用无线充电设备给手机进行无线充电,预计 2023 年全球市场空间达 97 亿美元。车载 无线充电的原理是电磁感应定律,主要器件是电源芯片和线圈模组,线圈通电产生磁场,电源 芯片调节电压电流的大小、频率。车载无线充电产业链可以分为上游的方案设计、零部件厂商、 中游的模组制造、代工厂商和下游的品牌商。上游主要有四个环节:方案设计、电源芯片、磁 性材料、线圈。方案优劣直接影响充电效率,电源芯片决定充电方案和功率。这两个环节技术 壁垒高、利润率高,以国外龙头厂商为主。

35、中游包括模组制造和代工,较为简单,利润不大,国内厂商为重要参与者。下游的品牌商包括汽车品牌(如特斯拉)、手机品牌(如华为)、第三 方品牌(如倍思)。汽车品牌内置无线充电区域,前装价格千元左右。消费电子和第三方品牌 通过适配器取电,加装无线充电支架,后装价格 100-400 元左右。据 Valuates、Marketreportsworld、 Marketresearchfuture 数据,2018 年到 2023 年全球车载无线充电市场 CAGR 为 40%,经测算得 2023 年全球车载无线充电市场空间为 97 亿美元。车联网需专用无线通信技术,射频前端为重要部分,预计 2023 年智能网联

36、汽车射频前端 市场规模达 38.1 亿美元。车联网对车载无线通讯提出低时延、高可靠、数据传输快的要求, 需要新的专用通信技术:基于 IEEE 802.11p 的 DSRC 和基于蜂窝网络的 C-V2X。C-V2X 为主 流,目前基于 LTE,未来可基于 5G。C-V2X 有两种通信方式:PC5 接口无需基站传输,通过 设备直连进行短距离交互;Uu 接口通过基站传输,适用于长距离、大数据量、低时延场景。车载无线通信模块包含四部分,即天线、射频前端(RFFE)、射频收发、基带。射频前端是重 要组成部分,实现接收和发射通路,其主要器件包括:功率放大器、滤波器、开关、低噪音放 大器、调谐器、双/多工器

37、。据 IDC 和 Skyworks 预测,2020-2024 年全球智能网联汽车出货量 分别为 44.4、58.3、65.9、72.2、76.2 百万辆,每辆智慧网联车射频模块价值量为 50 美元,经 测算得 2024 年智能网联车 RFFE 市场空间为 38.1 亿美元。射频前端整体市场由 Skyworks、 Qorvo、Broadcom、Murata 四大巨头瓜分 85%,且各家公司都在针对车联网市场推出车用 RFFE。四、 半导体:需求拉动高景气,加速国产替代(一) 经济复苏&创新驱动,带动半导体行业景气上行1、宏观经济环境好转,带动半导体行业复苏2、国际主流半导体厂商指引乐观3、国内疫

38、情防控情况良好,三季度国内厂商业绩喜人4、产品、技术创新驱动半导体需求进一步提升(1)新能源汽车、新能源发电驱动半导体市场成长汽车电动化大势所趋,半导体增长迎来新机遇。温室气体限排政策以及新能源汽车补 贴政策极大刺激了新能源汽车的消费需求,而新能源汽车电动化、智能化的趋势进一步推 动车用半导体市场规模提升。电动化方面,转换高压电池输出的电压、电流提升 IGBT、 MOSFET 等功率半导体需求;智能化方面,自动驾驶、自动泊车、自动启停等技术以及车 内娱乐系统提升 MCU、传感器和处理芯片需求。随着新能源汽车渗透率的提升,车用半 导体市场规模将进一步扩大。预计到 2025 年中国新能源汽车半导体

39、市场规模将达 260 亿元,2019 至 2025 年复合 增速为 26%。新能源汽车产业发展规划(20212035 年)提出新能源汽车发展愿景, 计划到 2025 年,国内新能源汽车渗透率将达到 20%。据乘联会预计,2025 年中国汽车销 量将达 2400 万辆,若新能源汽车渗透率能够达到规划提出的 20%,则 2025 年新能源汽车 销量预计将达到 480 万辆。根据英飞凌最新统计,全电池电动车(BEV)和全插电混合电 动车(PHEV)中半导体平均价值约为 834 美元。假设车用半导体价值量不变,预计中国 新能源汽车半导体市场空间将在 2025 年达到 260 亿元。(备注:按 1 美元

40、等于 6.5 人民币 计算)电动车充电桩带动功率半导体需求增长。我国汽车充电设施的保有量随着新能源汽 车市场的发展不断提升。2019 年中国新能源汽车保有量 418.12 万辆,充电桩保有量 122 万座,车桩比约为 3.4:1。其中公共交流电充电桩 30 万座,公共直流电充电桩 22 万座, 私人充电桩 70 万座。由于直流充电桩功率高,充电速度快,更能满足消费者的需求,在 未来比例有望进一步提高。预计到 2025 年中国充电桩 IGBT 市场规模将达 35 亿元,2019 至 2025 年复合增速 22%。从目前看来,新能源汽车报废周期在 8-10 年之间,按前述测算,2025 年新能源汽

41、 车保有量将达到 1847 万辆,随着新基建的推进,假设到 2025 年车桩比提升至 3:1,可 推算出 2025 年充电桩保有量约为 615 万个,由于新基建侧重公共充电桩的建设,到 2025 年,公共车桩比例有望到达 50%。目前市场上公共直流电充电桩成本约为 4 万元,公共交 流电充电桩成本约 0.5 万元,私人交流电充电桩成本约 0.3 万元,IGBT 在充电桩中的成本 约为 20。根据以上数据分析,我们预计充电桩用 IGBT 市场空间将在 2025 年达到 35 亿 元。新能源发电装机量持续增长,带动功率半导体需求提升。近年来新能源发电成本的不 断下降以及低碳环保的需求促进光伏/风电

42、装机容量持续扩大。根据国家可再生能源中心 数据,2020 年中国光伏发电装机容量为 246GW,风力发电装机容量为 242GW,按照国家 政策规划,预计到 2025 年中国光伏发电装机容量将达到 485GW,较 2020 年增长 97.15%, 风力发电装机容量将达到 425GW,较 2020 年增长 75.62%。由于新能源发电系统无法输 出可直接并网的交流电,所以需要通过光伏逆变器、风电整流器对电压、电流进行调整, 这一过程中,功率半导体器件发挥着核心作用。随着新能源发电装机容量的增长,功率半 导体市场规模也逐步扩大。预计2025年光伏逆变器功率半导体市场空间约为44亿元,年复合增长率为2

43、9.55%。以光伏发电为例,新增装机和逆变器更换都将带来功率半导体的需求增长,根据 Trend F orce 数据,2019 年全球光伏逆变器总出货量 51.91GW,预计 2025 年光伏逆变器出货量将 达 327GW。光伏发电设备的逆变器可选择组串式逆变器、集中式逆变器和集散式逆变器, 根据 CPIA 测算,2019 年上述三类逆变器的加权平均成本大约为 0.2 元/W,2025 年有望 降至 0.15 元/W。假设光伏逆变器成本中,功率半导体占比在 9%左右,则预计全球光伏逆 变器功率半导体市场规模将从 2019 年的 9.34 亿元增至 2025 年的 44 亿元,年复合增长率 为 2

44、9.55%。(2)5G应用带动半导体需求上升5G 手机销量逆势增长,手机半导体市场量价齐升。据信通院统计,中国大陆市场 5 G 手机销量从 2019 年 9 月的 21.9 万部,占当月全部手机销量的 0.71%,快速增长至 2020年 11 月的 2013.6 万部,占 11 月全部手机销量的 68.06%。根据中国联通预测, 2021 年 我国手机终端销量中,5G 手机份额有望超过 90%。相比平均 100Mbps 的 4G 网速,5G 网 络速度约为 4G 网速的 7-8 倍,更高的通信速率、更多的数据处理量,也对手机处理芯片, 射频芯片等半导体元件提出更大的需求,单机价值也将进一步提升

45、。预计到 2027 年 5G 手机处理器市场规模将达 228.6 亿美元,年复合增长率 47.3%。目前 已经发布的 5G 处理器包括联发科天玑 1000、华为麒麟 9905G、三星 Exynos980、高通骁龙 888,大部分都使用了 7nm 制程、SiP 封装技术,以提高芯片性能。根据测算,5G 手机集成处 理器价格是 4G 手机的两倍。其中 5G 基带芯片的价格约为 33.40 美元,而 CPU 的价格预计为 55.60 美元。根据 The insight partner 数据,2019 年全球 5G 处理器芯片市场规模 10.3 亿美元, 预计到 2027 年该市场规模将达 228.6

46、 亿美元,年复合增长率达到 47.3%。5G 基站建设加速推进,功率半导体量价齐升。为传输更大量的信息,5G 传输信号所用电磁波比 4G 有更高的频率,这导致电磁波穿透能力降低,信号衰减速度加快。为保证通讯信号 畅通,5G 基站的覆盖密度必须高于 4G 基站 1.5-2 倍,即一个 4G 基站可覆盖的信号范围需要 1.5-2 个 5G 基站进行覆盖,因此大大增加所需的基站数量。据 iResearch 预计,到 2024 年中国 将建成 622 万个 5G 基站。除了增加 5G 基站数量以保证通讯信号畅通,5G 通信需要使用 Massive MIMO 技术来实现大带宽,低延时网络传输。MIMO

47、是指通过多个天线发送、接受信 号。在固定信号频率和发射功率的条件下,天线数量越多,系统信道容量越高,信号覆盖范围 越广。预计 2024 年中国 5G 基站 Massive MIMO 功率半导体的市场规模将达 1.07 亿美元,年复 合增长率 116%。据英飞凌统计,每个 4G 基站中使用的 4T4RMIMO 天线中,功率半导体价值 约为 25 美元,而每个 5G 基站中使用的 Massive MIMO 天线中,功率半导体价值将提升至 100 美元。根据 iResearch 数据,2019 年中国 5G 基站数量为 13 万座,预计到 2024 年将达到 622 万座。我们依照单个 Massiv

48、e MIMO 中功率半导体的价值量以及 2024 年新建 5G 基站数量, 测算出 2024 年中国 5G 基站 Massive MIMO 功率半导体的市场规模将达 1.07 亿美元,年复合 增长率 116%。(3)未来5年人工智能芯片市场将保持高增长AI 芯片发展势头迅猛,市场规模逐步扩大。AI 芯片是专门用于处理人工智能应用中的 大量计算任务的模块,具体可分为以 CPU、GPU、FPGA 为主的传统芯片和通用型、专用型 的智能芯片。尽管 AI 芯片行业仍处于起步阶段,但发展势头迅猛。根据 Tractica 数据,2019 年全球 AI 芯片市场规模约 110 亿美元,预计到 2025 年该

49、市场规模将达到 724 亿美元,复 合增速达 36.9%。中国 AI 芯片市场也将迎来发展良机,根据前瞻产业研究院数据,2019 年 中国 AI 芯片市场规模约为 122 亿元人民币,预计到 2024 年该市场规模将达到 785 亿元人 民币,年复合增长率 45.1%。(4)DRAM技术逐步升级,存储芯片市场迎来新增长机遇DDR5 性能升级,技术进步带动价值量提升。在存储容量方面,DDR5 采用由 8 个 Bank Group 组成的 32 Bank 架构,比 DDR4 由 4 个 Bank Group 组成的 16 Bank 架构,多出 1 倍 的存取可用性;在密度上,DDR5 单个存储芯片达到了 64Gbit 的密度,相较 DDR4 的最大

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 消防试题

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁