《专题07 三角函数 7.2三角恒等变换 题型归纳讲义-2022届高三数学一轮复习(解析版).docx》由会员分享,可在线阅读,更多相关《专题07 三角函数 7.2三角恒等变换 题型归纳讲义-2022届高三数学一轮复习(解析版).docx(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、专题七 三角函数讲义7.2 三角恒等变换知识梳理.三角恒等变换1两角和与差的正弦、余弦、正切公式C():cos()coscossinsinC():cos()coscossin_sinS():sin()sincoscos_sinS():sin()sincoscossinT():tan().T():tan().2二倍角的正弦、余弦、正切公式S2:sin 22sincosC2:cos 2cos2sin22cos2112sin2T2:tan 2.3辅助角公式asinwx+bcoswx=a2+b2sin(wx+)其中tan=ba, (0,2)题型一. 两角和与差公式1已知sin(+6)=13,(3,56
2、),则cos(+3)2616【解答】解:(3,56),+6(2,),由sin(+6)=13,得cos(+6)=223,cos(+3)cos(+6)+6cos(+6)cos6sin(+6)sin6=223×3213×12=2616故答案为:26162已知234,若cos()=1213,sin(+)=35,则sin2()A13B13C5665D1665【解答】解:已知234,(0,4),+(,32),若cos()=1213,sin(+)=35,sin()=1cos2()=513,cos(+)=1sin2(+)=45,则sin2sin(+)()sin(+)cos()cos(+)s
3、in()=351213(45)513=1665,故选:D3(1)设,为锐角,且sin=55,cos=31010,求+的值; (2)化简求值:sin50°(1+3tan10°)【解答】解:(1)为锐角,sin=55,cos=255;为锐角,cos=31010,sin=1010,cos(+)coscossinsin=255×3101055×1010=22,+(0,),+=4(2)sin50°(1+3tan10°)=sin50°(cos10°+3sin10°)cos10°=sin50°2co
4、s(60°10°)cos10°=sin100°cos10°=14(2020新课标)已知2tantan(+4)7,则tan()A2B1C1D2【解答】解:由2tantan(+4)7,得2tantan+11tan=7,即2tan2tan2tan177tan,得2tan28tan+80,即tan24tan+40,即(tan2)20,则tan2,故选:D5(2015重庆)若tan2tan5,则cos(310)sin(5)=()A1B2C3D4【解答】解:tan2tan5,则cos(310)sin(5)=coscos310+sinsin310sincos
5、5cossin5=cos310+tansin310tancos5sin5=cos310+2tan5sin3102tan5cos5sin5=cos310+2sin5cos5sin3102sin5cos5cos5sin5=cos5cos310+2sin5sin3102sin5cos5cos5sin5=cos(5310)+sin5sin310sin5cos5+sin(55)=cos10+sin5sin310sin5cos5=cos1012cos(5+310)cos(5310)12sin25=cos10+12cos1012sin25=3cos10sin25=3cos10sin(210)=3cos10c
6、os10=3故选:C6(2014新课标)设(0,2),(0,2),且tan=1+sincos,则()A3=2B3+=2C2=2D2+=2【解答】解:由tan=1+sincos,得:sincos=1+sincos,即sincoscossin+cos,sin()cossin(2),(0,2),(0,2),当2=2时,sin()sin(2)cos成立故选:C题型二. 二倍角和半角公式1(2017·全国3)已知sincos=43,则sin2()A79B29C29D79【解答】解:sincos=43,(sincos)212sincos1sin2=169,sin2=79,故选:A2若sin(6)
7、=13,则cos(23+2)的值()A79B79C429D429【解答】解:sin(6)=13,cos(+3)sin2(+3)=sin(6)=13cos(23+2)=cos2(+3)2cos2(+3)1=79,故选:A3设为锐角,若cos(+6)=45,则sin(2+12)的值为()A17250B17225C31251D19250【解答】解:为锐角,cos(+6)=45,sin(+6)=35,sin(2+3)2sin(+6)cos(+6)=2425,cos(2+3)2cos2(+6)1=725故sin(2+12)sin(2+3)4sin(2+3)cos4cos(2+3)sin4=2425227
8、2522=17250,故选:A4已知tan()=12,tan=17,且,(0,),则2()A4B4,54C34D4,54,34【解答】tan()=tantan1+tantan=12 且tan=17即tan=13,(0,)且tan4=1,tan34=1(0,4),(34,)即2(,4)tan(2)=tan+tan()1tantan()=1即2=34故选:C5已知tantan(+4)=23,则sin(2+4)的值是210【解答】解:已知tantan(+4)=23,整理得3tan25tan20,解得tan=2或13,(1)当tan2时,则sin2=2tan1+tan2=45,cos2=1tan21+
9、tan2=35,故sin(2+4)=22sin2+22cos2=45×2235×22=210(2)当tan=13时,则sin2=2tan1+tan2=35,cos2=1tan21+tan2=45,sin(2+4)=22sin2+22cos2=35×22+45×22=210故答案为:2106已知(2,0),2sin2+1cos2,则1tan21+tan2=()A2±5B3+5C2+5D2+6【解答】解:因为(2,0),2(4,0),所以tan20,sin0,因为2sin2+1cos2,所以4sincos+112sin2,即tan2,又tan=2t
10、an21tan22=2,解得tan2=152,tan2=1+52(舍),则1tan21+tan2=11521+152=1+535=2+5故选:C题型三. 辅助角公式1设是第一象限角,满足sin(4)cos(+4)=622,则tan()A1B2C3D33【解答】解:sin(4)cos(+4)=22sin22cos22cos+22sin,=2(sincos)=622,sincos=312,联立sincos=312sin2+cos2=1,设是第一象限角,sin0,cos0,即sin=32,cos=12,tan=sincos=3212=3故选:C2若3sin(x+12)+cos(x+12)=23,且2
11、x0,求sinxcosx【解答】解:3sin(x+12)+cos(x+12)=23,32sin(x+12)+12cos(x+12)=13,sin(x+12+6)=13,即sin(x+4)=13,2x0,4x+44,cos(x+4)=1(13)2=223,sinxcosx=2(22cosx22sinx)=2cos(x+4)=2×223=433已知f(x)sin2x+sinxcosx,x0,2(1)求f(x)的值域;(2)若f()=56,求sin2的值【解答】解:(1)f(x)sin2x+sinxcosx=1cos2x2+sin2x2 =22sin(2x4)+12f(x)=22sin(2
12、x4)+12x0,2,2x44,34,当2x4=4,即x0时,f(x)有最小值0当2x4=2时,f(x)有最大值2+12f(x)值域:0,2+12(2)f()=22sin(24)+12=56,得sin(24)=23,0,2,244,34,又0sin(24)=2322,24(0,4),得cos(24)=1(23)2=73,sin2sin(24+4)=22sin(24)+cos(24)=2+146sin2的值2+146题型四. 三角恒等变换综合1已知向量a=(1,sin),b=(2,cos),且ab,计算:sin+2coscos3sin【解答】解:ab,2sincos0,即cos2sin,则sin
13、+2coscos3sin=sin+4sin2sin3sin=5sinsin=52若cos(4)=35,则sin2()A725B15C15D725【解答】解:法1°:cos(4)=35,sin2cos(22)cos2(4)2cos2(4)12×9251=725,法2°:cos(4)=22(sin+cos)=35,12(1+sin2)=925,sin22×9251=725,故选:D3已知角(0,4),(2,),若sin(3)=35,cos(3)=12,则cos()4+3310【解答】解:(0,4),3(3,12),sin(3)=35,cos(3)=45,(2
14、,),3(23,6),cos(3)=12,sin(3)=32,cos()cos(3)+(3)cos(3)cos(3)sin(3)sin(3)=45×(12)(35)×(32)=4+3310故答案为:4+33104已知tan()=25,tan(+4)=14,则tan(+4)322【解答】解:因为tan()=25,所以tan()=25,又tan(+4)=14,则tan(+4)tan()+(+4)=25+141(25)×14=322故答案为:3225. 已知,化简: 【解答】解:,故答案为:6已知函数f(x)=sin(2x3)+cos(2x6)+2cos2x1(1)求函
15、数f(x)的最小正周期;(2)若4,2,且f()=325,求cos2【解答】解:(1)函数f(x)=sin(2x3)+cos(2x6)+2cos2x1=sin2xcos3cos2xsin3+cos2xcos6+sin2xsin6+cos2x sin2x+cos2x=2sin(2x+4);所以函数f(x)的最小正周期T=22=;(2)f()=325,即2sin(2+4)=325,sin(2+4)=354,2,342+454,cos(2+4)=45;cos2=cos(2+4)4=cos(2+4)cos4+sin(2+4)sin4=210;故cos2=210课后作业. 三角恒等变换1已知cosA+s
16、inA=713,A为第二象限角,则tanA()A125B512C125D512【解答】解:cosA+sinA=713,1+2cosAsinA=49169,2cosAsinA=120169(cosAsinA)2=289169A为第二象限角,cosAsinA=1713cosA=1213,sinA=513tanA=sinAcosA=512故选:D2若,(0,2),cos(a2)=32,sin(a2)=12,求+的值【解答】解:,(0,2),2(0,4),2(0,4),a2(4,2)a2(2,4),cos(a2)=32,sin(a2)=12sin(a2)=12或sin(a2)=12,cos(2)=32
17、,当cos(a2)=32,sin(a2)=12sin(a2)=12,cos(2)=32,时cos12(+)=32×3212×12=12,12(+)=3当cos(a2)=32,sin(a2)=12sin(a2)=12,cos(2)=32时,cos12(+)=32×3212×(12)1,12(+)0,不符合题意,故舍去+=23即两个角的和是233已知sin(a3)=13,则cos(3+2a)的值等于()A429B429C79D79【解答】解:因为cos(3+2a)cos (3+2a)cos(232a)cos(2a23)2sin2(a3)12×(13
18、)21=79故选:C4已知tan+1tan=52,(4,2),则sin(24)的值为()A7210B210C210D7210【解答】解:tan+1tan=52,sincos+cossin=52,1sin2=54,sin2=45,(4,2),2(2,)cos2=35,sin(24)sin2cos4cos2sin4=45×22+35×22=7210故选:D5已知sin=12+cos,且(0,2),则cos(2)sin(4)的值为142【解答】解:sin=12+cos,即sincos=12,(sincos)212sincos=14,即2sincos=340,(0,2),sin0,
19、cos0,(sin+cos)21+2sincos=74,即sin+cos=72,原式=cos222(sincos)=2(cos+sin)(cossin)sincos=2(cos+sin)=142,故答案为:1426已知cos(2+)3sin(+76),则tan(12+)()A423B234C443D434【解答】解:cos(2+)3sin(+76),sin3sin(+6),sin3sin(+6)3sincos6+3cossin6=332sin+32cos,tan=3233;又tan12=tan(34)=tan3tan41+tan3tan4=311+3=23,tan(12+)=tan12+tan1tan12tan=(23)+32331(23)×3233=234故选:B