2022届高三数学一轮复习(原卷版)专题10 数列求和方法之错位相减法(原卷版).docx

上传人:秦** 文档编号:5098387 上传时间:2021-12-03 格式:DOCX 页数:6 大小:269.24KB
返回 下载 相关 举报
2022届高三数学一轮复习(原卷版)专题10 数列求和方法之错位相减法(原卷版).docx_第1页
第1页 / 共6页
2022届高三数学一轮复习(原卷版)专题10 数列求和方法之错位相减法(原卷版).docx_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《2022届高三数学一轮复习(原卷版)专题10 数列求和方法之错位相减法(原卷版).docx》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)专题10 数列求和方法之错位相减法(原卷版).docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、专题10 数列求和方法之错位相减法一、单选题1已知等比数列an的前n项和为Sn,若S3=7,S6=63,则数列nan的前n项和为( )A-3+(n+1)×2nB3+(n+1)×2nC1+(n+1)×2nD1+(n-1)×2n二、解答题2在公差不为零的等差数列中,前五项和,且,依次成等比数列,数列的前项和满足().(1)求及;(2)设数列的前项和为,求.3已知数列an的前n项和为Sn,且Sn2n1. (1)求数列an的通项公式,(2)设函数f(x)()x,数列bn满足条件b1f(1),f(bn+1)求数列bn的通项公式, 设cn,求数列cn的前n项和Tn4

2、数列的前项和,数列的前项和,满足.(1)求及;(2)设数列的前项和为,求并证明:.5已知数列是公差不为零的等差数列,若,且、成等比数列.(1)求数列的通项公式;(2)若,求数列的前项和.6已知数列an的前n项和为Sn,且满足2Sn3an3,其中nN*(1)证明:数列an为等比数列;(2)设bn2n1,cn,求数列cn的前n项和Tn7已知等比数列中,.(1)求数列的通项公式;(2)记,求数列的前项和.8已知数列的前项和. (1)求数列的通项公式;(2)设,求数列的前项和.(3)若存在正整数,使得成立,求实数的取值范围.9已知数列满足,.设.(1)求证:数列是等比数列;(2)求数列的前项和为.10

3、已知等比数列满足,.(1)定义:首项为1且公比为正数的等比数列为“数列”,证明:数列是“数列”;(2)记等差数列的前项和记为,已知,求数列的前项的和.11已知等比数列的公比,且满足,数列的前项和,.(1)求数列和的通项公式;(2)设,求数列的前项和.12已知各项都大于1的数列an的前n项和为Sn,4Sn4n1an2:数列bn的前n项和为Tn,bnTn1.(1)分别求数列an和数列bn的通项公式;(2)设数列cn满足cnanbn,若对任意的nN*.不等式5(n3bn)2bnSn>n(c1c2c3cn)恒成立,试求实数的取值范围.13已知等差数列的前n项的和为,且,.(1)求数列的通项公式;

4、(2)设,求数列的前n项和.14记等比数列的前n项和为,已知.(1)求数列的通项公式;(2)令,求数列的前n项和.15已知数列的前n项的和为,且.(1)求数列的通项公式;(2)设,求数列的前n项和.16已知数列中,.(1)求证:是等比数列,并求的通项公式;(2)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.17已知数列an的首项为0,且2anan+1+an+3an+1+20.(1)证明数列是等差数列,并求an的通项公式;(2)已知数列bn的前n项和为Sn,且,若不等式(-1)nSn+3×2n+1对一切nN*恒成立,求的取值范围.18已知等比数列an的公比大于1,且满

5、足a3+a590,a427(1)求an的通项公式;(2)记bnlog3an,求数列an(bn+1)的前n项和Tn.19已知在等差数列中,其前8项和.(1)求数列的通项公式(2)设数列满足,求的前项和.20已知等差数列的前项和为,和的等差中项为.(1)求及;(2)设,求数列的前项和.21甲乙两名同学在复习时发现他们曾经做过的一道数列题目因纸张被破坏导致一个条件看不清,具体如下等比数列的前n项和为,已知_,(1)判断的关系并给出证明.(2)若,设,的前n项和为,证明.甲同学记得缺少的条件是首项的值,乙同学记得缺少的条件是公比q的值,并且他俩都记得第(1)问的答案是成等差数列.如果甲乙两名同学记得的答案是正确的,请通过推理把条件补充完整并解答此题.22已知数列中,且满足(1)求证:数列是等差数列,并求数列的通项公式;(2)求证:对于数列,的充要条件是.23数列的前n项和为,若,点在直上.(1)求证:数列是等差数列,并求的通项公式;(2)若数列满足,求数列的前项和;24已知数列,满足,.(1)令,证明:数列为等差数列,并求数列的通项公式;(2)若,证明:.25已知是递增的等差数列,、是方程的根(1)求数列的通项公式;(2)求数列的前项和三、填空题50求和_. (用数字作答)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁