《湖南车用铝铸件项目投资计划书【范文】.docx》由会员分享,可在线阅读,更多相关《湖南车用铝铸件项目投资计划书【范文】.docx(149页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、泓域咨询/湖南车用铝铸件项目投资计划书目录第一章 行业、市场分析7一、 铝合金加工分为铸造和形变,压铸工艺最为成熟与高效7二、 轻量化技术多点突破,铝压铸工艺综合占优9第二章 项目总论11一、 项目名称及建设性质11二、 项目承办单位11三、 项目定位及建设理由12四、 报告编制说明14五、 项目建设选址17六、 项目生产规模17七、 建筑物建设规模17八、 环境影响17九、 项目总投资及资金构成17十、 资金筹措方案18十一、 项目预期经济效益规划目标18十二、 项目建设进度规划19主要经济指标一览表19第三章 项目建设背景及必要性分析22一、 一体化压铸将全面提高生产环节的资金与技术壁垒2
2、2二、 汽车轻量化势在必行,铝压铸工艺优势显著31三、 一体化压铸引领技术变革,工艺升级提升行业壁垒34四、 加快构建现代化产业体系,打造国家重要先进制造业高地36第四章 项目投资主体概况40一、 公司基本信息40二、 公司简介40三、 公司竞争优势41四、 公司主要财务数据43公司合并资产负债表主要数据43公司合并利润表主要数据43五、 核心人员介绍44六、 经营宗旨45七、 公司发展规划45第五章 项目选址分析51一、 项目选址原则51二、 建设区基本情况51三、 全面融入新发展格局54四、 项目选址综合评价54第六章 建筑技术分析56一、 项目工程设计总体要求56二、 建设方案57三、
3、建筑工程建设指标58建筑工程投资一览表58第七章 产品方案分析60一、 建设规模及主要建设内容60二、 产品规划方案及生产纲领60产品规划方案一览表60第八章 运营模式62一、 公司经营宗旨62二、 公司的目标、主要职责62三、 各部门职责及权限63四、 财务会计制度66第九章 SWOT分析说明73一、 优势分析(S)73二、 劣势分析(W)75三、 机会分析(O)75四、 威胁分析(T)76第十章 工艺技术及设备选型84一、 企业技术研发分析84二、 项目技术工艺分析87三、 质量管理88四、 设备选型方案89主要设备购置一览表90第十一章 项目实施进度计划91一、 项目进度安排91项目实施
4、进度计划一览表91二、 项目实施保障措施92第十二章 环保分析93一、 编制依据93二、 建设期大气环境影响分析93三、 建设期水环境影响分析95四、 建设期固体废弃物环境影响分析96五、 建设期声环境影响分析96六、 环境管理分析97七、 结论99八、 建议99第十三章 原辅材料供应100一、 项目建设期原辅材料供应情况100二、 项目运营期原辅材料供应及质量管理100第十四章 投资方案102一、 投资估算的依据和说明102二、 建设投资估算103建设投资估算表107三、 建设期利息107建设期利息估算表107固定资产投资估算表109四、 流动资金109流动资金估算表110五、 项目总投资1
5、11总投资及构成一览表111六、 资金筹措与投资计划112项目投资计划与资金筹措一览表112第十五章 经济效益114一、 经济评价财务测算114营业收入、税金及附加和增值税估算表114综合总成本费用估算表115固定资产折旧费估算表116无形资产和其他资产摊销估算表117利润及利润分配表119二、 项目盈利能力分析119项目投资现金流量表121三、 偿债能力分析122借款还本付息计划表123第十六章 招标及投资方案125一、 项目招标依据125二、 项目招标范围125三、 招标要求125四、 招标组织方式126五、 招标信息发布127第十七章 项目风险分析128一、 项目风险分析128二、 项目
6、风险对策130第十八章 项目总结132第十九章 附表附件135主要经济指标一览表135建设投资估算表136建设期利息估算表137固定资产投资估算表138流动资金估算表139总投资及构成一览表140项目投资计划与资金筹措一览表141营业收入、税金及附加和增值税估算表142综合总成本费用估算表142利润及利润分配表143项目投资现金流量表144借款还本付息计划表146本期项目是基于公开的产业信息、市场分析、技术方案等信息,并依托行业分析模型而进行的模板化设计,其数据参数符合行业基本情况。本报告仅作为投资参考或作为学习参考模板用途。第一章 行业、市场分析一、 铝合金加工分为铸造和形变,压铸工艺最为成
7、熟与高效车用铝合金加工工艺分为铸造和形变,铝铸件在汽车用铝中占比最高。(1)铸造铝合金:将铝合金加热至熔融状态,流入模具中冷却成型后加工成汽车零部件。铸造铝合金具有良好的导热性和抗腐蚀性,兼顾提高汽车在纵向和横向震动中的性能。铸造铝合金被车企广泛使用在发动机气缸、汽车摇臂、轮毂、变速箱壳体等耐久性要求高、结构更为复杂的位置。(2)形变铝合金:变形铝合金是指通过冲压、弯曲、轧制、挤压等工艺使其组织、形状发生变化的铝合金。应用上,铸造铝合金一般用于结构更加复杂的部件,形变铝合金则适用于结构较为简单、对机械性能要求更高的汽车部位。根据中国船舶重工集团数据显示目前汽车各类铝合金实际占比为铸铝77%,轧
8、制材、挤压材各占10%,锻造材最低,仅占3%。形变铝合金机械性能好但应用范围有限,无法完成汽车精密结构件。车用形变铝合金主要包括锻造、挤压和轧制铝合金,三种形变铝合金受力方法不同,成形与性能也各不相同。(1)锻造铝合金质量良好,冲击力承受能力强,应用于大型轧钢机的轧辊、汽轮发电机组的转子、汽车和拖拉机的曲轴、连杆等。(2)挤压铝合金工艺灵活度高,挤压铝型材作车身骨架除了可以减轻重量,还可以通过局部零部件特殊结构增加零部件强度,但存在废料损失大、工具损耗导致成本高等问题。(3)轧制是铝型材、铝板的主要成型工艺,主要用在金属材料型材、板、管材。形变铝合金具有塑性高、机械性能好的优点,但无法完成汽车
9、精密结构件,产品应用范围有限。铸造铝合金工艺分为砂型铸造和特种铸造两大类,特种铸造更适用于汽车铝合金加工。砂铸是最为传统的在砂型中生产铸件的铸造方法,但产品精度不高且生产率较低;在其基础上进一步发展的重力铸造虽然可以进一步改善问题,但也存在限制铸件体积、需严格控制模具温度否则会影响铸件质量的问题。因此,砂型铸造在汽车零部件的应用并不广泛。砂铸之外的铸造工艺统称为特种铸造,包括压力铸造、挤压铸造、离心铸造、连续铸造等。其中,压力铸造工艺最为成熟且高效;挤压铸造产品机械性能较好于一般压铸工艺,具有液态金属利用率高、工序简化和质量稳定等优点,但难以生产结构复杂的部件,影响产品应用范围;而离心、连续铸
10、造的产品生产较为固定,离心铸造一般用于生产管状类器具,连续铸造则用于生产断面形状不变的长铸件。压铸是铸造工艺中最成熟、效率最高的制造技术之一,目前在汽车铸件中占比超70%。压铸是利用高压将金属熔液压入模具内,并在压力下冷却成型的制造工艺。根据中国有色金属加工工业协会数据分析显示,汽车用铝中压铸件占铸件的比重超70%。工艺优点:(1)压铸时金属液体承受压力高,流速快;(2)产品质量好,尺寸稳定,互换性好;(3)生产效率高,压铸模使用次数多;(4)适合大批量生产,经济效益好。工艺缺点:(1)铸件容易产生细小的气孔和缩松,导致压铸件塑性低,不宜在冲击载荷及有震动的情况下工作;(2)高熔点合金压铸时,
11、寿命低,影响压铸生产的扩大。为了解决上述气泡等缺点,压铸工艺如差压压铸、真空压铸等也在不断发展迭代。此前压铸工艺主要用于发动机缸盖和缸体、悬臂架、变速器、发电机支架、离合器壳、汽车空调压缩机等,目前随着一体化、大型化压铸技术的进步,逐步向大型三电、车身结构件等方向延伸。二、 轻量化技术多点突破,铝压铸工艺综合占优材料、工艺、设计多点突破,三大举措相辅相成。目前实现轻量化的路径主要包括材料、工艺和设计三个方向。1)轻量化材料:采用高强度钢、铝合金、镁合金、碳纤维材料等轻量化材料代替普通钢材料,通过降低用量或降低密度实现减重;2)轻量化工艺:发展一体化压铸、激光拼焊、液压成形、轻量化连接等制造工艺
12、,通过减少零部件或连接件用量实现减重;3)轻量化设计:通过计算机自动化设计软件和力学理论对现有零部件进行尺寸优化、形状优化、拓扑优化实现产品减重。其中,材料轻量化是工艺和结构轻量化的基础,根据轻量化材料的选用,工艺与结构在其基础上进行进一步减重设计;同时针对工艺与结构减重的技术发展,还可以进一步拓展不同的轻量化材料的应用范围。轻量化三大举措彼此相辅相成,共同发展。铝压铸工艺综合优势突出,一体化压铸趋势逐步凸显。在不同的轻量化材料中,铝合金的性能、密度、成本和可加工性等综合优势突出,与多种金属合金和碳纤维相比是极具性价比和技术成熟度的轻量化材料。在制造工艺中,高压压铸产品在高压下成型,具有致密性
13、高、产品强度及表面硬度高、表面光洁度好等优势,适合生产复杂、薄壁的各类结构件。当前汽车技术迭代和产能提升需求不断加速,铝压铸方案综合优势明显。随着新型铝合金材料和大型压铸设备的研发攻关不断取得突破,车企和压铸厂商已经开始陆续布局大吨位压铸机,一体化压铸技术的成熟度快速爬坡。随着大吨位压铸机的落地投产,采用一体化压铸技术生产大型车用结构件的趋势将更加清晰。一体化压铸技术可以生产更加复杂的结构件,从而为轻量化设计提供更可靠的生产工艺。第二章 项目总论一、 项目名称及建设性质(一)项目名称湖南车用铝铸件项目(二)项目建设性质本项目属于新建项目二、 项目承办单位(一)项目承办单位名称xx(集团)有限公
14、司(二)项目联系人严xx(三)项目建设单位概况公司全面推行“政府、市场、投资、消费、经营、企业”六位一体合作共赢的市场战略,以高度的社会责任积极响应政府城市发展号召,融入各级城市的建设与发展,在商业模式思路上领先业界,对服务区域经济与社会发展做出了突出贡献。 公司依据公司法等法律法规、规范性文件及公司章程的有关规定,制定并由股东大会审议通过了董事会议事规则,董事会议事规则对董事会的职权、召集、提案、出席、议事、表决、决议及会议记录等进行了规范。 公司秉承“以人为本、品质为本”的发展理念,倡导“诚信尊重”的企业情怀;坚持“品质营造未来,细节决定成败”为质量方针;以“真诚服务赢得市场,以优质品质谋
15、求发展”的营销思路;以科学发展观纵观全局,争取实现行业领军、技术领先、产品领跑的发展目标。 公司以负责任的方式为消费者提供符合法律规定与标准要求的产品。在提供产品的过程中,综合考虑其对消费者的影响,确保产品安全。积极与消费者沟通,向消费者公开产品安全风险评估结果,努力维护消费者合法权益。公司加大科技创新力度,持续推进产品升级,为行业提供先进适用的解决方案,为社会提供安全、可靠、优质的产品和服务。三、 项目定位及建设理由一体化压铸要求更高工艺水平,压铸机吨位不断突破提升。目前量产的铝合金单体压铸结构零件,如后纵梁、减震塔、尾门内板以及门框加强板等,形状规则,结构紧凑,型面变化小,料厚相对均匀,因
16、而易于压铸。但一体压铸零件包含了整车左右侧的后轮罩内板、后纵梁、地板连接板、梁内加强板等零件,型面、截面以及料厚的变化都更加剧烈。因而一体式车身对工艺上的流态、压射比压与速度等参数的控制更加严格,对设备的精准与阈值、模具的抵抗冲击变形能力要求更为苛刻。当生产乘用车和商用车的变速箱外壳与发动机缸体等铸件时,压铸机的锁模力大致要求在5000吨以内。随着一体化压铸技术的不断突破以及行业对轻量化的需求,一体化压铸的车身结构件尺寸逐渐增大,需要的压铸机的吨位相应提升。因此一体化压铸工艺所需的大吨位压铸机仍是制约企业量产的重要因素,但随着压铸机不断地吨位突破,该难题即将解决。以特斯拉为例,已将一体式压铸技
17、术作为标准工艺进行布局,14台一体式压铸设备分置于四家工厂,其中,德州工厂计划引进1台IDRA8000吨级的压铸设备,和IDRA联合研发12000吨超级压铸机也在进行中。一体化压铸提高了模具壁垒,抗压力和形状设计要求激增。模具的设计与制造是生产一体化压铸件的重要前端工序,随着压铸机锁模力的提高,一体化压铸件精度的增加以及压铸件多合一趋势带来设计复杂度的上升,模具的角度、热流道和制造成型难度提升,导致模具的抗压力、和形状设计要求激增。(1)抗压力。一体化压铸的锁模力增强,以前的压铸机锁模力大多在5000t以下,随着6000t、8000t甚至12000t压铸机的不断普及,模具在工作时将会承受更多压
18、力,从而造成损伤。同时,在金属熔炼和铸件脱模时,模具需要承受各种维度的拉力和推力的影响,容易造成裂纹,影响模具的使用寿命。(2)形状设计。一体化压铸件往往是将多个零部件一体化压铸成型,比如长城和比亚迪的多合一壳体,所以模具体积更大,金属流通通道更加复杂。在压铸过程中,金属液将在模具中流动,随着模具结构的复杂化,金属液容易在流动通道的转角处无法充分填充造成缺陷,同时更加容易产生气泡对良率产生影响。国内一体化压铸模具逐渐向定制化发展,铝压铸企业基本具有模具自研能力。不同车型大小、空间、结构存在差异,导致一体化压铸件并不能成为大多数车企通用的标准件,需要根据不同车型单独设计,进行定制化开发。由于模具
19、壁垒的提高,铝压铸企业纷纷拓展技术团队成立单独的子公司或者部门,加强模具自研和定制化开发能力,随着一体化压铸的技术推进,铝压铸企业不断加强自主研发,部分龙头企业已经拥有大型和复杂模具的开发能力,具有先发优势。工艺壁垒:一体化压铸厂商需要兼具研发能力和生产经验积累四、 报告编制说明(一)报告编制依据1、一般工业项目可行性研究报告编制大纲;2、建设项目经济评价方法与参数(第三版);3、建设项目用地预审管理办法;4、投资项目可行性研究指南;5、产业结构调整指导目录。(二)报告编制原则1、项目建设必须遵循国家的各项政策、法规和法令,符合国家产业政策、投资方向及行业和地区的规划。2、采用的工艺技术要先进
20、适用、操作运行稳定可靠、能耗低、三废排放少、产品质量好、安全卫生。3、以市场为导向,以提高竞争力为出发点,产品无论在质量性能上,还是在价格上均应具有较强的竞争力。4、项目建设必须高度重视环境保护、工业卫生和安全生产。环保、消防、安全设施和劳动保护措施必须与主体装置同时设计,同时建设,同时投入使用。污染物的排放必须达到国家规定标准,并保证工厂安全运行和操作人员的健康。5、将节能减排与企业发展有机结合起来,正确处理企业发展与节能减排的关系,以企业发展提高节能减排水平,以节能减排促进企业更好更快发展。6、按照现代企业的管理理念和全新的建设模式进行规划建设,要统筹考虑未来的发展,为今后企业规模扩大留有
21、一定的空间。7、以经济救益为中心,加强项目的市场调研。按照少投入、多产出、快速发展的原则和项目设计模式改革要求,尽可能地节省项目建设投资。在稳定可靠的前提下,实事求是地优化各成本要素,最大限度地降低项目的目标成本,提高项目的经济效益,增强项目的市场竞争力。8、以科学、实事求是的态度,公正、客观的反映本项目建设的实际情况,工程投资坚持“求是、客观”的原则。(二) 报告主要内容1、项目背景及市场预测分析;2、建设规模的确定;3、建设场地及建设条件;4、工程设计方案;5、节能;6、环境保护、劳动安全、卫生与消防;7、组织机构与人力资源配置;8、项目招标方案;9、投资估算和资金筹措;10、财务分析。五
22、、 项目建设选址本期项目选址位于xx,占地面积约62.00亩。项目拟定建设区域地理位置优越,交通便利,规划电力、给排水、通讯等公用设施条件完备,非常适宜本期项目建设。六、 项目生产规模项目建成后,形成年产xxx吨车用铝铸件的生产能力。七、 建筑物建设规模本期项目建筑面积77463.45,其中:生产工程48853.61,仓储工程16443.25,行政办公及生活服务设施8579.55,公共工程3587.04。八、 环境影响本项目选址合理,符合相关规划和产业政策,通过采取有效的污染防治措施,污染物可做到达标排放,对周边环境的影响在可承受范围内,因此,在切实落实评价提出的污染控制措施和严格执行“三同时
23、”制度的基础上,从环境影响的角度,本项目的建设是可行的。九、 项目总投资及资金构成(一)项目总投资构成分析本期项目总投资包括建设投资、建设期利息和流动资金。根据谨慎财务估算,项目总投资33864.50万元,其中:建设投资25046.81万元,占项目总投资的73.96%;建设期利息272.47万元,占项目总投资的0.80%;流动资金8545.22万元,占项目总投资的25.23%。(二)建设投资构成本期项目建设投资25046.81万元,包括工程费用、工程建设其他费用和预备费,其中:工程费用22178.05万元,工程建设其他费用2205.62万元,预备费663.14万元。十、 资金筹措方案本期项目总
24、投资33864.50万元,其中申请银行长期贷款11121.37万元,其余部分由企业自筹。十一、 项目预期经济效益规划目标(一)经济效益目标值(正常经营年份)1、营业收入(SP):73400.00万元。2、综合总成本费用(TC):59938.26万元。3、净利润(NP):9839.80万元。(二)经济效益评价目标1、全部投资回收期(Pt):5.78年。2、财务内部收益率:20.54%。3、财务净现值:10902.68万元。十二、 项目建设进度规划本期项目按照国家基本建设程序的有关法规和实施指南要求进行建设,本期项目建设期限规划12个月。十四、项目综合评价综上所述,该项目属于国家鼓励支持的项目,项
25、目的经济和社会效益客观,项目的投产将改善优化当地产业结构,实现高质量发展的目标。主要经济指标一览表序号项目单位指标备注1占地面积41333.00约62.00亩1.1总建筑面积77463.451.2基底面积26453.121.3投资强度万元/亩394.272总投资万元33864.502.1建设投资万元25046.812.1.1工程费用万元22178.052.1.2其他费用万元2205.622.1.3预备费万元663.142.2建设期利息万元272.472.3流动资金万元8545.223资金筹措万元33864.503.1自筹资金万元22743.133.2银行贷款万元11121.374营业收入万元7
26、3400.00正常运营年份5总成本费用万元59938.266利润总额万元13119.737净利润万元9839.808所得税万元3279.939增值税万元2850.0910税金及附加万元342.0111纳税总额万元6472.0312工业增加值万元21730.4013盈亏平衡点万元28833.69产值14回收期年5.7815内部收益率20.54%所得税后16财务净现值万元10902.68所得税后第三章 项目建设背景及必要性分析一、 一体化压铸将全面提高生产环节的资金与技术壁垒汽车铝压铸属于资金密集型行业,一体化压铸进一步提升门槛。为了保证产品的精度、强度、可加工性等技术指标达到较高的水平,汽车铝压
27、铸企业需要投入熔炼、压铸、模具生产、机加工、精密检测等加工设备,前期购置费用高。为了提升产品质量与生产效率,部分行业龙头企业不断推进自动化、智能化战略,引入工业机器人广泛应用于压铸、精密机加工、去毛刺、抛光等各生产工序,以提高生产效率、降低生产成本、改善工作环境、精简生产用工、减少次品率以及提高产品质量稳定性,对企业的资金提出了更高需求。2021年以来大型化、一体化压铸进一步提升了大型压铸机的购置门槛。压铸机单价与吨位成正比关系:中小型压铸机(锁模力50吨以下)在15万以下,100吨以上价格随锁模力同步上升,1000吨以上价格增长幅度明显加快,5000T压铸岛单机采购金额约在1500-2000
28、万元左右;压铸机周边配套设备通常增加20%-30%成本;国外进口压铸机价格更是高于国内2-3倍。大型一体化压铸机的采购与投产极大抬高了铝压铸行业的资金门槛。新能源渗透率提升驱动需求加速,三电技术迭代提升技术门槛。随着新能源汽车渗透率快速提升,续航里程问题是新能源汽车积极布局轻量化技术的重要推手。特斯拉在ModelY车型首次尝试使用一体压铸结构件选择后底板进行压铸,很大原因是这个部位碰撞受损的几率小,而前车身和后车身的零部件对压铸件的抗撞等性能要求更高,对远浇端和近浇端性能的一致性也更苛刻,这些都对大型车身件乃至整车身的一体化压铸技术提出了更高的挑战。据中国能源报数据,新能源汽车三电系统通常占新
29、能源汽车整车重量的30-40%,三电系统的轻量化是新能源汽车实现轻量化和提升续航的关键路径。随着整车厂对进行三电系统进行一体化设计,如高压三合一(DC-DC直流转换装置、OBC车载充电器、PDU高压配电箱)、驱动三合一(电机、电机控制器、减速器)等,多合一装置的结构日益复杂,对适用于多合一装置的铝压铸壳体的结构、精度和性能的要求也愈发严格。因此采用一体化压铸技术生产结构复杂的铝制车身结构件、三电系统缸体和壳体需要更先进的工艺和更长久参数积累来保证铸件的良品率。新能源客户需求的日益多样化和高标准化,促使了铝压铸企业的技术分化和赛道竞争。汽车精密压铸件行业的技术壁垒呈现不断提高的趋势。大尺寸叠加复
30、杂结构提高流动性要求,降低流长放大裕度抵消远端性能下降。一体化压铸的车身件通常具有尺寸大和结构复杂等特征,因此压铸过程中铝液在模腔内的流长较长,需要原材料具有良好的流动性。同时,一体化压铸件需要满足车身不同部位对受力、强度以及韧性的不同要求。强度相关的结构件,抗拉强度通常210mpa,伸长率7。韧性相关的结构件的抗拉强度通常180mpa,伸长率10;然而随着流长增加,原材料充填远端的力学性能会有所下降,甚至与充填近端产生巨大差异,难以保证产品力学性能上的一致性。当前一方面可以在不改变产品结构外形的基础上,可以通过降低流长来大幅度提高充填末端的力学性能。从材料改良的角度,可以通过不断提高原材料的
31、基础力学性能来抵消充填远端在力学性能上下降,通过放大原材料的性能裕度来满足一体化压铸产品的尺寸越来越大的要求。不同系列铝合金性能差异较大,流动性和力学性能平衡是关键壁垒。传统的汽车压铸铝合金包括Al-Si、Al-Cu和Al-Mg三个主要系列。(1)Al-Si合金:Si元素的加入可以改善流动性。增加Si的含量话可提高铝合金的耐磨性、硬度和强度,降低收缩率,但导电性也会降低。含硅达到16%至18%的合金可以做发动机缸体。(2)Al-Cu合金:Cu可以通过固溶强化和时效强化提高合金的强度,有较高的热处理强化效果和较好的热稳定性,适合铸造高温下使用的零件,具有较高的机械性能,较好的切削性;但缺点是铸造
32、性能较差,易产生裂纹,耐蚀性也不好。(3)Al-Mg合金:铝镁合金中镁元素占比大于5%,具有较好的抗拉强度和硬度,抗腐蚀性好。不同系列的铝合金材料虽然应用成熟,但性能差异较大。为保证流动性,应用于一体化压铸的铝合金需要保有一定量的硅元素,但压铸后形成的粗晶硅又会严重影响材料的力学性能,这就需要加入不同的其它合金元素来细化晶粒。这又会增加材料成本,导致产品成本的大幅增加,无法批量运用。现有量产运用的材料都有着专利壁垒。图表43:常用压铸铝合金的化学成分与力学性能热处理可能降低一体化产品良率,免热处理材料进一步提升技术含量。传统的铝压铸车身件为满足高延伸率性能,通常需要进行热处理,但是随着一体化铸
33、件尺寸越来越大,进行热处理时容易发生形变导致良品率降低,因此需要开发免热处理的铝合金材料。通过在现有合金的基础上添加新的微量元素或者调整微量元素比例以改善材料性能是免热处理材料的开发的主流路径。特斯拉、美国美铝、德国莱茵菲尔德、立中集团、帅翼驰集团、华人运通与上海交大等企业均有布局。以立中集团研发的免热合金为例,免热合金含有更高硅量,无需经过热加工即可具备更高强度。特斯拉自研的新型铝合金材料强度可以调整至90MPa到150Mpa,导电性可以达到40%IACS到60%IACS。各家均对新材料配比严格保密,一旦新型免热处理材料配方试制成功并获得专利授权即可对竞争对手形成先发优势,进一步筑牢竞争壁垒
34、。设备壁垒:一体化压铸需要大型化设备和定制化模具压铸机是铸件生产的核心设备,吨位提升推高生产难度。压铸机属于标准化机器,根据安装的模具不同以生产多样化零部件产品。根据工艺方式,压铸机分为热室与冷室压铸机,其中热室压铸机的自动化程度高,材料损耗少,生产效率比冷室压铸机更高,但受机件耐热能力的制约,目前还只能用于锌合金、镁合金等低熔点材料的铸件生产,主要用于小型铝、镁合金压铸件的生产。而冷室压铸机由于熔点较高,当今广泛使用的铝合金压铸件只能在冷室压铸机上生产,1000吨以上的大型压铸机均为冷室机。压铸机合模后,通过压射系统将高温熔融金属液快速地充填至模具中,在压力作用下使熔融金属液冷却成型,开模后
35、可以得到固体金属铸件。压铸机、压铸模具与配套的熔炼炉、机边炉、取件和清理喷雾机器人、切边设备、机加工机床、检测设备、冷却系统、排气系统等周边设备组合在一起,形成压铸岛。根据锁模力,压铸机分为小型(160-400吨)、中型(400-1000吨)、大型(大于1000吨)和超大型(大于5000吨)压铸机。一体化压铸要求更高工艺水平,压铸机吨位不断突破提升。目前量产的铝合金单体压铸结构零件,如后纵梁、减震塔、尾门内板以及门框加强板等,形状规则,结构紧凑,型面变化小,料厚相对均匀,因而易于压铸。但一体压铸零件包含了整车左右侧的后轮罩内板、后纵梁、地板连接板、梁内加强板等零件,型面、截面以及料厚的变化都更
36、加剧烈。因而一体式车身对工艺上的流态、压射比压与速度等参数的控制更加严格,对设备的精准与阈值、模具的抵抗冲击变形能力要求更为苛刻。当生产乘用车和商用车的变速箱外壳与发动机缸体等铸件时,压铸机的锁模力大致要求在5000吨以内。随着一体化压铸技术的不断突破以及行业对轻量化的需求,一体化压铸的车身结构件尺寸逐渐增大,需要的压铸机的吨位相应提升。因此一体化压铸工艺所需的大吨位压铸机仍是制约企业量产的重要因素,但随着压铸机不断地吨位突破,该难题即将解决。以特斯拉为例,已将一体式压铸技术作为标准工艺进行布局,14台一体式压铸设备分置于四家工厂,其中,德州工厂计划引进1台IDRA8000吨级的压铸设备,和I
37、DRA联合研发12000吨超级压铸机也在进行中。一体化压铸提高了模具壁垒,抗压力和形状设计要求激增。模具的设计与制造是生产一体化压铸件的重要前端工序,随着压铸机锁模力的提高,一体化压铸件精度的增加以及压铸件多合一趋势带来设计复杂度的上升,模具的角度、热流道和制造成型难度提升,导致模具的抗压力、和形状设计要求激增。(1)抗压力。一体化压铸的锁模力增强,以前的压铸机锁模力大多在5000t以下,随着6000t、8000t甚至12000t压铸机的不断普及,模具在工作时将会承受更多压力,从而造成损伤。同时,在金属熔炼和铸件脱模时,模具需要承受各种维度的拉力和推力的影响,容易造成裂纹,影响模具的使用寿命。
38、(2)形状设计。一体化压铸件往往是将多个零部件一体化压铸成型,比如长城和比亚迪的多合一壳体,所以模具体积更大,金属流通通道更加复杂。在压铸过程中,金属液将在模具中流动,随着模具结构的复杂化,金属液容易在流动通道的转角处无法充分填充造成缺陷,同时更加容易产生气泡对良率产生影响。国内一体化压铸模具逐渐向定制化发展,铝压铸企业基本具有模具自研能力。不同车型大小、空间、结构存在差异,导致一体化压铸件并不能成为大多数车企通用的标准件,需要根据不同车型单独设计,进行定制化开发。由于模具壁垒的提高,铝压铸企业纷纷拓展技术团队成立单独的子公司或者部门,加强模具自研和定制化开发能力,随着一体化压铸的技术推进,铝
39、压铸企业不断加强自主研发,部分龙头企业已经拥有大型和复杂模具的开发能力,具有先发优势。工艺壁垒:一体化压铸厂商需要兼具研发能力和生产经验积累面向客户需求提供产品方案,研发能力成为重要竞争环节。随着一体化压铸技术的落地应用,因为一体化压铸的大型产品相对小型铸件的结构更复杂,不同部位的需要满足的力学性能和要求的工艺参数也可能差异巨大,所以在新产品生产前,压铸企业需要面向客户的需求深入参与到一体化产品的开发设计流程,即要参与到产品前期的方案设计中,根据客户需求和产品要求对压铸工艺进行针对性的参数优化、模具设计和技术改造,需要经过大量的试验论证和优化改造环节后才能通过生产批准程序并最终进入产品制造环节
40、。是否具有独立开发甚至同步开发的能力是汽车一级零部件供应商和整车厂商选择供应商的重要评审标准。产品开发环节是客户与公司共同研发的过程,公司的技术研发能力成为核心竞争力之一,同时也是获取订单的重要手段之一。一体化压铸工艺环节复杂,全流程操作要素确保产品质量。一体化压铸产品的大型化和结构复杂化趋势,对企业的压铸工艺参数控制和生产流程管理等都提出了更高要求。(1)合金熔化和处理:熔化过程中要避免金属杂质污染,快速熔化的同时不可过热,防止金属液氧化及偏析,氧化物和硬夹杂对铸件的铸造性能和力学性能都有不利影响,还需要控制熔损,保证合金的高塑性。(2)给液(浇注)方式:熔融金属液从注入口进入模具内部,因为
41、结构复杂,金属液需要流经的路径不同,如何保证压铸件不同部位的性能一致性问题是一体化压铸工艺的关键。(3)脱模剂喷涂工艺:脱模剂或润滑剂可产生气体进入铸件,在选用脱模剂或润滑剂时,要经过验证,选用发气性低和挥发性好的产品。(4)压铸过程:压铸工艺对生产合格的汽车结构件十分重要,正确地选择压射模式、压射参数等有利于减少压铸件中的缺陷。压铸机性能稳定,要有灵活的编程模式和实时控制系统,保证整个压铸过程合理及工艺参数偏差最小。对模具温度应进行精确控制,通过冷却水分配器,监控各个冷却回路的流量及温度,形成要求的温度分布。目前,具有传统高压压铸生产线的厂商中只有头部的几家掌握了一体化结构件的压铸工艺。可见
42、一体化压铸工艺具有较高的技术门槛,行业格局将进一步向头部企业集中。产品精度要求不断提升,精密机加工能力重要性凸显。一体化压铸除了对原材料的熔炼、转运保温以及压铸成型等工艺要求高,对于铸件清理和铸件后处理等也都提出了新的要求。压铸成型后需要铸件清理,将产品与辅助成型的浇道排气板集渣包分离,采用撞击,冲切,锯切等方式实现;铸件后处理指用铸件毛刺打磨等工序确保产品符合客户要求,通过固溶、时效处理或单独时效处理等工序改善铸件内部组织性能,通过研磨、喷砂、抛丸等工序实现铸件表面质量要求。压铸过程由于受到脱模斜度的要求,受到模具制造精度的限制及其热变形、脱模变形等高压压铸特定工艺的限制,导致铸件的尺寸精度
43、、位置精度等可能没有达到图纸的设计要求。而像三电壳体这类对密封性能有极高要求的部件,除了满足机械强度等性能外,还需要严格保证产品的一致性和装配的标准化,确保三电系统壳体的密封性能从而避免在一些极端温度和高压环境下三电系统发生失效。因此,需经过精密机械加工设备对铸件毛坯进行精确加工。随着一体化压铸产品的结构升级,汽车零部件的精度要求需要企业拥有更高的机加工能力。二、 汽车轻量化势在必行,铝压铸工艺优势显著汽车尾气污染持续威胁环境,碳中和驱动节能减排势在必行。截至2021年底,我国机动车保有量达3.95亿辆,同比增长6.18%,年增量始终保持在两千万辆左右,中长期看仍具有较快增速。高机动车保有量使
44、得机动车尾气污染严重。根据2020年发布的第二次全国污染源普查公报,机动车排放的氮氧化物、挥发性有机物分别达595/196万吨,占全国排放总量的33.3%与19.3%。因此,在蓝天保卫战和双碳政策驱动下,汽车减排、低碳化发展形势较为紧迫。燃油乘用车整体降耗目标不断提升,新能源汽车助力节能减排潜力显著。按照2020年10月正式发布的节能与新能源汽车技术路线图2.0规划,2020-2035年我国乘用车百公里油耗年均降幅逐步提高,减排压力逐年增加。然而依据国家部委发布的2016-2019年度中国乘用车企业平均燃料消耗量与新能源汽车积分核算情况表,可计算得到2016-2019年传统能源乘用车新车实际平
45、均百公里油耗分别为6.88L、6.77L、6.62L及6.46L,始终高于达标油耗6.7L、6.4L、6L、5.5L。但受新能源汽车销量持续提升影响,乘用车总体新车平均百公里油耗低于达标值,且拉动幅度越来越大。由此可见,新能源汽车具有较大节能减排潜力,随着新能源汽车渗透率的逐步提高,可以进一步缓解汽车行业的节能减排压力。技术路线图明确新能源发展目标,2035年节能与新能源汽车销量占比各50%。为进一步推动汽车低碳化进程,节能与新能源汽车技术路线图(2.0版)提出汽车产业碳排放总量先于国家碳排放承诺于2028年左右提前达到峰值,到2035年排放总量较峰值下降20%以上和新能源汽车逐渐成为主流产品
46、,汽车产业实现电动化转型等愿景目标。具体里程碑目标如下:至2035年,节能汽车与新能源汽车年销量各占50%,汽车产业实现电动化转型;氢燃料电池汽车保有量达到100万辆左右,商用车实现氢动力转型。全球电动化趋势不断提速,新能源汽车渗透率持续超预期。国际能源署(IEA)数据显示,2010-2020年,随着各国政府加速电动化转型,汽车行业全面向新四化进军,全球新能源汽车实现年销量十连增,CAGR约81%,新能源汽车(纯电+插混)渗透率由0.01%上升至接近4%。进入2021年以来,中国、欧洲作为全球前两大新能源汽车市场,销量表现持续超预期。2021国内新能源汽车累计销量352.1万辆,同比+158%,渗透率达14.2%,提升8个pct,首次突破两位数。同时期欧洲新能源汽车销量达214.2万辆,同比+70%,渗透率达到14.6%,提升6个pct,延续了2020年以来超高景气表现;美国新能源汽车销量达65.2万辆,同比+101%,渗透率达到4.3%,提升2个pct,预计2022年有望达到8%。车重制约降耗、续航能力提升,轻量化需求顺应而生。电动车动力系统包括电池、电机和电控三大系统,通常占整车总质量的3040%,在动力电池能量密度的现有水平下,电动车以及广义新能源汽车的动力系统质量与空间占比显著高于传统燃油车,车重高于传统燃油车525%,未来