《CAESARII 管道应力分析 培训.doc》由会员分享,可在线阅读,更多相关《CAESARII 管道应力分析 培训.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年-2023年建筑工程管理行业文档 齐鲁斌创作CAESARII软件培训资料北京艾思弗计算机软件公司2002年4月12日1管道应力分析的原则管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。2管道应力分析的主要内容 管道应力分析分为静力分析和动力分析。 静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算防止疲劳破坏; 3)管道对设备作用力的计算防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算为支吊架设计提供依据; 5)管道上法兰的受
2、力计算防止法兰汇漏。 动力分析包括: l)管道自振频率分析防止管道系统共振; 2)管道强迫振动响应分析控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析防止气柱共振; 4)往复压缩机(泵)压力脉动分析控制压力脉动值。3管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击: (7)两相流脉动荷载; (8)压力脉动荷载:如往复压缩机往复运动所产生的
3、压力脉动; (9)机械振动荷载:如回转设备的振动。 4管道应力分析的目的 1)为了使管道和管件内的应力不超过许用应力值; 2)为了使与管系相连的设备的管日荷载在制造商或国际规范(如 NEMA SM-23、API-610、 API-6 17等)规定的许用范围内; 3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内; 4)为了计算管系中支架和约束的设计荷载; 5)为了进行操作工况碰撞检查而确定管于的位移; 6)为了优化管系设计。5管道柔性设计方法的确定 一般说来,下述管系必须利用应力分析软件(如 CAESAR II)通过计算机进行计算及分析。 1)与贮罐相连的,公称管径12
4、”及以上且设计温度在100度及上的管线; 2)离心式压缩机(API 617)及往复式压缩机(API 618)的3”及以上的进、出口管线: 3)蒸汽透平(NAME SM23)的入口、出口和抽提管线; 4)泵(API 610)公称管径4”及以上且温度 100度及以上或温度-20度及以下的吸入。 排出管线; 5)空冷器(API 661)公称管径 6”及以上且温度 120度及以上的进、出口管线; 6)加热炉(API 560)与管口相连的 6”及以上和温度 200度及以上的管线; 7)相当长的直管,如界区外的管廊上的管线; 8)法兰处的泄漏会造成重大危险的管线,如氧气管线、环氧乙烷管线等。 9)公称管径
5、4”及以上且100度及以上或-50度及以下的所有管线;6摩擦系数的确定 除非另有规定,在进行管道柔性分析时摩擦系数应作如下考虑: 滑动支架: 钢对钢 0.3 不锈钢对聚四氟乙烯 0.1 聚四氟乙烯对聚四氟乙烯 0.08 钢对混凝土 0.6 滚动支架: 钢对钢(滚珠) 0.3 钢对钢(滚柱) 0.3 注:滚珠沿轴向运动时应采用滑动摩擦系数7管道柔性设计 管道柔性是反映管道变形难易程度的一个物理概念,表示管道通过自身变形吸收热胀、冷缩和其它位移变形的能力。 进行管道设计时,应在保证管道具有足够的柔性来吸收位移应变的前提下,使管道的长充尽可能短或投资尽可能少。在管道柔性设计中,除考虑管道本身的热胀冷
6、缩外,还应考虑管道端点的附加位移。设计时,一般采用下列一种或几种措施来增加管道的柔性: (1)改变管道的走向; (2)选用波形补偿器、套管式补偿器或球形补偿器;(3)选用弹性支吊架。8管道柔性设计的目的 管道柔性设计的目的是保证管道在设计条件下具有足够的柔性,防止管道回热胀冷缩、端点附加位移、管道支承设置不当等原因造成下列问题; (1)管道应力过大引起金属疲劳和(或)管道推力过大造成支架破坏; (2)管道连接处产生泄漏;(3)管道推力或力矩过大,使与其相连接的设备产生过大的应力或变形,影响设备正常运行。9应进行详细柔性设计的管道 (1)进出加热炉及蒸汽发生器的高温管道; (2)进出汽轮机的蒸汽
7、管道; (3)进出离心压缩机,透平鼓风机的工艺管道; (4)进出离心分离机的工艺管道; (5)进出高温反应器的管道; (6)温度超过400的管道; (7)利用图表或其他简化法初步分析后,表明需要进一步详细分析的管道:(8)与有受力要求的其他设备相连的管道。10管道柔性设计计算结果的内容 (1)输入数据; (2)各节点的位移和转角; (3)各约束点的力和力矩; (4)各节点的应力; (5)二次应力最大值的节点号、应力值和许用应力范围值;(6)弹簧参数表。11管道柔性设计合格的标准 (1)管道上各点的二次应力值应小于许用应力范围; (2)管道对设备管口的推力和力矩应在允许的范围内;(3)管道的最大
8、位移量应能满足管道布置的要求。12冷紧问题 冷紧是指在安装时(冷态)使管道产生一个初位移和初应力的一种方法。 如果热胀产生的初应力较大时,在运行初期,初始应力超过材料的屈服强度而发生塑性变形,或在高温持续作用下,管道上产生应力松弛或发生蠕变现象,在管道重新回到冷态时,则产生反方向的应力,这种现象称为自冷紧。 冷紧的目的是将管道的热应变一部分集中在冷态,从而降低管道在热态卜的热胀应力和对端点的推力和力矩,也可防止法兰连接处弯矩过大而发生泄漏。但冷紧不改变热胀应力范围。 冷紧比为冷紧值与全补偿量的比值。 通常应尽量避免采用冷紧,在必须采用冷紧的情况下,要遵循下列原则: 为了降低管道运行初期在工作状
9、态下的应力和管道对连接设备或固定点的推力、力矩以及位 移量,可以采用冷紧,但冷紧不能降低管道的应力范围; 对于材料在蠕变条件下(碳钢380度以上,低合金钢和高铬钢420度以上)工作的管道进行 冷紧时,冷紧比(亦即冷紧值与全补偿量的比值)应不小于0.7。对于材料在非蠕变条件下工 作的管道,冷紧比它取0.5。对冷紧有效系数,热态取2/3,冷态取1。 对连接转动设备的管道,不宜采用冷紧。 与敏感设备相连的管道不宜采用冷紧。因为由于施工误差使得冷紧量难于控制,另一方面,在管道安装完成要将与敏感设备管口相连的管法兰卸开,以检查该法兰与设备法兰的同轴度和平行度,如果采用冷紧将无法进行这一检查。13带约束的
10、金属波纹管膨胀节类型 (1)单式铰链型膨胀节,由一个波纹管及销轴和铰链板组成,用于吸收单平面角位移; (2)单式万向铰链型膨胀节,由一个波纹管及万向环、销轴和铰链组成,能吸收多平面角位移;(3)复式拉杆型膨胀节,由用中间管连接的两个波纹管及拉杆组成,能吸收多平面横向位移和膨 胀节本身的轴向位移;(4)复式铰链型膨胀节,由用中间管连接的两个波纹管及销轴和铰链板组成,能吸收单平面横向 位移和膨胀节本身的轴向位移;(5)复式万向铰链型膨胀节,由用中间管连接的两个波纹管及销轴和铰链板组成,能吸收互相垂 直的两个平面横向位移和膨胀节本身的轴向位移;(6)弯管压力平衡型膨胀节,由一个工作波纹管或用中间管连
11、接的两个工作波纹管及一个平衡波 纹管构成,工作波纹管与平衡波纹管间装有弯头或三通,平衡波纹管一端有封头并承受管道 内压,工作波纹管和平衡波纹管外端间装有拉杆。此种膨胀节能吸收轴向位移和或横向位 移。拉杆能约束波纹管压力推力。常用于管道方向改变处;(7)直管压力平衡型膨胀节,一般由位于两端的两个工作波纹管及有效面积等于二倍工作波纹管 有效面积、位于中间的一个平衡波纹管组成,两套拉杆分别将每一个工作波纹管与平衡波纹 管相互连接起来。此种膨胀节能吸收轴向位移。拉杆能约束波纹管压力推力。 带约束的金属波纹管膨胀节的共同特点是管道的内压推力(俗称盲板力)没有作用于固定点或限位点外,而是由约束波纹膨胀节用
12、的金属部件承受。14对转动设备允许推力的限制 管道对转动设备的允许推力和力矩就由制造厂提出,当制造厂无数据时,可按下列规定进行核算: (1)单列、中心线安装、两点支承的离心泵,其允许推力和力矩应符合API610规定;(2)尺寸较小的非冷凝式通用汽轮机,蒸汽管道对汽轮机接管法兰的最大允许推力和力矩应符合 NEMA SM23的规定。(3)离心压缩机的管道对压缩机接管法兰的最大允许推力和力矩应取NEMA SM23规定值的1.85 倍。15热膨胀量(初位移)的确定(l)封头中心管口热膨胀量的计算 封头中心管口只有一个方向的热膨胀,即垂直方向,考虑到从分钦塔固定点至封头中心管口之间可能存在操作温度和材质
13、的变化,故总膨胀量按下式计算;(2)封头斜插管口热膨胀量的计算 封头斜插管口有两个方向的热膨胀,即垂直方向和水平方向的热膨胀,垂直方向的热膨胀量计算同式,水平方向的热膨胀量按下式计算: (3)上部筒体径向管口有两个方向的热膨胀,即垂直方向和水平方向的热膨胀,垂直方向的热膨胀量计算同式,水平方向的热膨胀量按下式计算:16管道设计中可能遇到的振动 (l)往复式压缩机及往复泵进出日管道的振动; (2)两相流管道呈柱塞流时的振动; (3)水锤: (4)安全阀排气系统产生的振动; (5)风载荷、地震载荷引起的振动。17往复压缩机、往复泵的管道振动分析的内容 振动分析应包括: (1)气(液)柱固有频率分析
14、,使其避开激振力的频率; (2)压力脉动不均匀度分析,采用设置缓冲器或孔板等脉动抑制措施,将压力不均匀度控制在允 许范围内: (3)管系结构振动固有频率、振动及各节点的振幅及动应力分析,通过设置防振支架优化管道布 置,消除过大管道振动。18共振 当作用在系统上的激振力频率等于或接近系统的因有频率时,振动系统的振幅会急剧增大,这种现象称为共振。 往复泵管道设计中可能引发共振的因素有:管道布置出现共振管长:缓冲器和管径设计不当造成流体固有频率与激振频率重叠导致气(液)柱共振;支承型式设置不当,转弯过多等造成管系机械振动固有频率与激振力频率重叠。 要避免发生共振,应使气(液)柱固有频率、管系的结构固
15、有频率与激振力频率错开。管道设计时应进行振动分析,合理设置缓冲器,避开共振管长,尽可能减少弯头,合理设置支架。 19管道支吊架的类型 管道支吊架可分为三大类:承重支吊架、限制性支吊架和防振支架。 承重支吊架可分为:刚性支吊架、可调刚性支吊架、弹簧支吊架和恒力支吊架。 限制性支吊架可分为:固定支架、限位支架和导向支架。 防振支架可分为:减振器和阻尼器。20管道支吊架选用的原则(1) 在选用管道支吊架时,应按照支承点所承受的荷载大小和方向、管道的位移情况、工作温度 是否保温式保冷、管道的材质等条件选用合适的支吊架: (2)设计管道支吊架时,应尽可能选用标准管卡、管托和管吊;(2) 焊接型的管托、管
16、吊比卡箍型的管托、管吊省钢材,且制作简单,施工方例,因此,除下列 情况外,应尽量采用焊接型的管插和管吊; l)管内介质温度等于或大于400度的碳素钢材质的管道; 2)低温管道; 3)合金钢材质的管道: 4)生产中需要经常拆卸检修的管道;21管道支吊架的作用 第一:承受管道的重量荷载(包括自重、介质重等); 第二:起限位作用,阴止管道发生非预期方向的位移; 第三:控制振动,用来控制摆动、振动或冲击。 固定架限制了三个方向的线位移和三个方向的角位移; 导向架限制了两个方向的线位移; 支托架(或单向止推架)限制了一个方向的线位移。22恒力弹簧支吊架、可变弹簧支吊架和刚性支吊架的刚度 恒力弹簧支吊架的
17、刚度理论上为零: 刚性支吊架的刚度理论上为无穷大; 可变弹簧支吊架的刚度等于弹簧产生单位变形所需要的力。23恒力弹簧支吊架和可变弹簧支吊架在应用上的限制 恒力弹簧支吊架适用于垂直位移量较大或受力要求荷刻的场合,避免冷热态受力变化太大,导致设备受力或管系应力超标。恒力弹簧的恒定度应小于或等6,以保证支吊点发生位移时,支承力的变化很小。 可变弹簧适用于支承点有垂直位移,用刚性支承会脱空或造成过大热胀推力的场合。与恒力弹簧相比,使用可变弹簧会造成一定的荷载转移,为防止过大的荷载转移,可变弹簧的荷载变化弯应小于或等于25。24设计振动管道支架时,应注意下列问题 (1)支架应采用防振管卡; (2)支架间
18、距应经过振动分析后确定; (3)支架结构和支架的生根部分应有足够的刚度; (4)宜设独立基础,尽量避免生根在厂房的梁柱上; (5)当管内介质温度较高,产生热胀时,应满足柔性分析的要求; (6)支架应尽量沿地面设置。25管道支吊架位置的确定 (1)应满足管道最大允许跨度的要求; (2)当有集中载荷时,支架应布置在靠近集中载荷的地方,以减少偏心载荷和弯曲应力; (3)在敏感的设备(泵、压缩机)附近,应设置支架,以防止设备嘴于承受过的管道荷载;(4)往复式压缩机的吸入或排出管道以及其它有强烈振动的管道,直单独设置支架,(支架生根于 地面的管墩或管架上),以避免将振动传递到建筑物上;(5)除振动管道外
19、,应尽可能利用建筑物、构筑物的梁柱作为支架的上根点,且应考虑生根点 所能承受的荷载,生根点的构造应能满足生根件的要求。 (6)对于复尽可能的管道,尤其是需要作详细应力计算的管道,尚应根据应力计算结果调整 (7)管道支吊架应设在不妨碍管道与设备的连接和检修的部位; (8)管道支吊架应设在弯管和大直径三通式分支管附近; (9)安全泄压装置出口管道应根据需要,考虑是否设置支架。26设置管道固定点应考虑下列问题 (l)对于复杂管道可用固定点将其划分成几个形状较为简单的管段,如L形管段、U形管段、Z 形管段等以便进行分析计算: (2)确定管道固定点位置时,使其有利于两固定点间管段的自然补偿; (3)选用
20、II形补偿器时,宜将其设置在两固定点的中部; (4)固定点直靠近需要限制分支管位移的地方; (5)固定点应设置在需要承受管道振动、冲击载荷或需要限制管道多方向位移的地方。 (6)作用于管道中固定点的载荷,应考虑其两侧各滑动支架的磨擦反力; (7)进出装置的工艺管道和非常温的公用工程管道,它在装置分界人设固定点。27压缩机进出口管道支架设计要点(1) 往复式压缩机的吸入和排出管道上的管架(或管墩)宜与建、构筑物基础脱开;不宜在楼 板和平台上生根,当设计独立的管架(或管墩)时,第一个支架应靠近压缩机; (2)往复式压缩机吸入和排出管道支架(或管墩)的高度应尽可能低,以便于管道的支承;(2) 往复式
21、压缩机的管道抑振管架,宜设在管道集中荷载处、管道拐弯、分支以及标高有变化 处;(3) 由于离心式压缩机吸入和排出管口一般均向下,机体热膨胀及管道热膨胀均向下,因此, 管道支架宜采用弹簧支架或弹簧吊架。28泵管道支架设置要点 各类泵嘴均有荷载限制,支架设置时应考虑这一因素。 (1)在靠近泵的管段上设置支,吊架或弹簧支吊架; (2)泵出口嘴垂直向上时,在距泵最近拐弯处,于泵基础以外的位置设置支架;也可在泵嘴正上 方的拐弯处设吊架: (3)对大型机泵的高温进出口管道,为减轻泵嘴受力而设置的支架,应尽量使约束点和泵嘴之间 的相对热伸缩量最小; (4)泵的水平吸入管道宜在靠近泵的管段上设置可调支架,也可
22、采用吊架或弹簧吊架; (5)为防止往复泵管道的脉动,应缩短管道支架之间的距离,尽量采用管卡型支架,不宜采用吊架 (6)泵的管道为常温时,应在泵嘴最近处设固定支架或导向架; (7)泵附属小管道尽量成组布置,以便安装支架: (8)末经泵制造厂许可,不得在泵底座上安装支架。弹簧支吊架设计1,可变弹簧支吊架设计基础 当管子移动时,弹簧载荷稍微发生变化,但从应力的观点看:当管于从冷态变化到热态时,弹簧载荷有一些变化是允许的。一个预设在某个位置的可变弹簧支吊架,在管子运动的全过程都对管子提供支承。当管于向上移动时,弹簧支吊架上的承重板上移,允许弹簧伸长,因而降低弹簧作用在管子上的载荷;当管子向下移动时,弹
23、簧支吊架上的承重板也下移,使弹簧压缩,因而使弹簧作用在管子上的载荷增大。 弹簧支吊架设计的目的是选择一个符合下列要求的弹簧: 当管子从冷态(安装状态)变化到热态(操作状态)后,弹簧提供必要的重力载荷支撑以平衡管系。 从冷态到热态的总位移在允许的范围内。 当弹簧载荷从冷载荷变化到热载荷时,不会在管系中造成过大的膨胀应力。 因为当管于从冷态到热态时,可变弹簧支吊架的载荷是变化的,并且弹簧支吊架设计的一个目的是提供必要的重量支撑载荷以平衡在热态位置的管系,因而有必要用不平衡的“冷态载荷”来安装弹簧支吊架。2载荷变化率 在某些情况下,管道规范推荐通过限制载荷变化率为10或25来使弹簧载荷的变化为最小。
24、因为热态载荷和热位移取决于管系的结构,所以一个弹簧支吊架的可变性只能通过改变弹簧刚度来控制。大多数制造商对于每个载荷值提供三种(或更多)不同弹簧刚度的弹簧,分别推荐用于短程。中程和长程的位移。因为在一个给定载荷值下的所有弹簧,在它们的全部行程中支承相同的载荷变化,通常长程弹簧的刚度(及其载荷变化率)是中程弹簧的一半,而后者又是短程弹簧的一半。3弹簧选型表 弹簧是从弹簧表中选出来的。弹簧表显示了每一号弹簧在工作范围内的负载能力,以及每一号的短、中、长程弹簧的弹簧刚度。在已知热态载荷、热位移和变化率的条件下,从表中选择弹簧的步骤为: 计算最大许用弹簧刚度; 在弹簧表的各列中找到热态载荷,来确定弹簧
25、载荷的大小; 针对载荷大小,选择弹簧刚度小于或等于上面计算值的弹簧系列; 计算冷态载荷并确认冷态载荷也落在弹簧的工作范围内; 如果不能满足条件,换相同号码的不同弹簧系列或邻近号的弹簧再试。4弹簧设计过程一约束重量,热态吊零及其它 上面描述的过程都是假设弹簧选型所需的热态载荷和热位移已知,但是工程师怎样来计算热态载荷和热位移呢?整个弹簧支吊架设计的步骤如下所述。 利用标准跨距原理来选择管架位置。假设在这点有一个刚性Y向约束,然后进行重量载荷分析。 这种分析称为“约束-重量”分析。在这一分析中,分布在每个约束上的重量载荷将被作为弹簧 选型时的热态载荷。 其次,从管架位置除去约束,进行热膨胀分析。这
26、种分析称为“自由-热态”分析。每个支架位 置的热态位移将被作为弹簧选择时的热位移。(注意:由于管系中可能有非线性约束的影响, CAESARII进行的不是一个真正的“自由-热态”工况分析,而是一个“弹簧位移下的操作”工况 分析,它包括热态载荷、重量载荷和在约束重量作用下的弹簧热态载荷。因为管系的重量载荷和 弹簧热态载荷基本上相互抵消,这样有效地造成一个只有热态的工况,而不考虑非线性作用。) 利用从约束-重量计算得出的热态载荷和自由-热态得到的位移,对每个点从上述弹簧表中选择一 个弹簧,利用弹簧刚度来确定安装所需冷态载荷(预置的弹簧载荷)。 通过在每个弹簧作用点增加一个刚度等于弹簧刚度的约束并且通
27、过增加弹簧预置载荷(冷态载 荷)作为在持续载荷工况起作用的力来调整模型以反映弹簧的存在,然后重新分析所有载荷工况 以获得弹簧真实存在时的效应。 只要用户在管系中指定弹簧,上述四个步骤(除了确定弹簧支吊架的位置)将由CAESARll自动完成。5弹簧支吊架设计说明1) 如果内装比重小于1.0的液体管系需要作水压试验,通常在水压试验期间弹簧支吊架的定位块不应 拆除,所选用的弹簧零部件(管卡、吊杆等)和支架结构必须能够承受水压试验载荷,而水压试 验载荷通常应作为这些支架的控制载荷。2) 在指定弹簧支吊架的热态和冷态载荷时,附加零部件的预期重量应加到CAESARII的计算载荷上, 特别是:当认为这些重量
28、很重要时(如在大管卡或由型钢制成的吊架组件的情况),弹簧必须同时 支承零部件;如果在定义弹簧参数时没有考虑这点,管系的重量载荷将由于弹簧零部件的重量而 造成不平衡。3) 为了保证管子不至于运动太大而从管架上掉下来,在设计管架时必须考虑弹簧支吊架位置的水平 位移,另外,弹簧制造商往往限制弹簧吊在一个6度的范围内。当水平位移特别大时,建议将支 架安装在偏置的位置以减小在冷态和热态位置时支架垂直作用线的偏差。4) 在由于不平衡冷态载荷造成的法兰配合问题使得安装有困难时,最好在现场调整弹簧以考虑一旦 系统开车后的热态载荷。在管口操作载荷不是主要因素,而法兰配合问题是关心的主要问题时, CAESARII
29、可以提供冷态载荷设计,其中在冷态工况,而不是在热态工况平衡重量载荷。5) CAESARII提供同时计算弹簧的“理论”和“实际”冷态载荷的选项。理论冷态载荷是弹簧在安 装前必须被预置的载荷(通常这个工作在制造厂做,弹簧被定位块销住在这个载荷值)。只要在这 个位置没有垂直位移,这就是弹簧将在冷态工况施加给管系的载荷。因为与管系的重量载荷相比, 冷态载荷几乎总是不平衡的,在冷态工况下管系的这个位置将存在净载荷。如果这个净载荷较大, 或管系的柔性较大,管系将在这个载荷作用下产生位移,造成弹簧伸长或压缩,相应引起弹簧读 数的变化。弹簧载荷的新读数就是CAESARII计算的“实际”冷态载荷,或更简单地说:
30、“理论” 冷态载荷就是在弹簧的制造厂订货单中指定的冷态载荷,而“实际”冷态载荷是在定位块被从初 始安装位置拉起后弹簧载荷的读数。如果在冷态位置调整或检验弹簧,或在安装位置而不是在工 厂设定弹簧的冷态载荷时,实际安装载荷工况是很重要的。6) 过多地使用弹簧将造成由于缺少约束刚度而使管系动态不稳定(低自然频率)。这些管系本质上没 有水平支架,而有很小的垂直刚度以限制Y方向的位移。注意:恒力弹簧支吊架对管系没有动态 影响。7) 由于管系的不平衡部分将会以其它管架为轴而旋转,在约束一重量情况下选定的弹簧位置可能实 际上影响管子向下运动。CAESARII在分析过程中用警告来指出这些位置,并在输出报告的弹
31、簧 表中将它们列为恒力弹簧支吊架。当发生上述情况时,应除去这些肇事弹簧或考虑邻近的管架位 置。8) 当在同一个问题中存在冷紧和弹簧设计时,有一些特殊规定是要考虑的。在约束-重量情况下忽略 冷紧,而在操作工况包括冷紧以计算弹簧位移。实际安装工况应考虑冷紧以便确定存在冷紧时的 弹簧安装设置。用户有责任证实在实际安装工况下的位移应在制造商建议的载荷范围内。通常只 是当在立管上有很大的冷紧而邻近又有一个或多个弹簧支吊架时会有问题。9) 在充满液体的管线中,弹簧支吊架通常是在管系空的时候安装。在这种情况下有必要忽略“实际” 冷态载荷,在某些情况下最好在现场调整弹簧支吊架来负担一旦管系充液的冷态载荷。6C
32、AESARII弹簧支吊架设计控制及选项 CAESARII为用户进行自动弹簧设计时提供了很多选项。这些控制选项可能在很大程度上适用于整个管系,或者部分管系。这些选项在CAESARII用户手册中有详尽描述,这里重点讲解几个选项。 实际冷态载荷计算这一点在上面已经详细描述了。如果存在下面的情况,用户应定义YES。 l)当管子被弹簧支吊架支承并能够自由垂直移动的情况下要调整弹簧的安装载荷(亦即:在弹簧支 吊架底板和承重板周围设有钢带以防止承重法兰在弹簧冷态位置调整时发生移动)。 2)弹簧附近的管系柔性非常大和或者弹簧的刚度非常大。 3)对于充液的管系,弹簧在管系全空时安装及设置,用户希望知道空的安装载
33、荷。 采用短程弹簧CAESARII的弹簧设计法首先试图选择使用短程弹簧,接着是中程弹簧,然后才是长程弹簧。在某些施工现场,短程弹簧被认为是特殊件。只有当已有的弹簧安装间隙很小且从冷态到热态弹簧的行程很小时才使用。在这些情况下,用户可以指定设计法不考虑短程弹簧(而以中程弹簧开始),除非空间限制要求这样。 许用载荷变化率当热态载荷小于冷态载荷时,固化在弹簧表建议范围内的最大可能载荷变化率接近 100,而当热态载荷大于冷态载荷时大约为 50。一般的许用载荷变化率是10到25。用户可以通过在一个点指定一个极小的载荷变化率来设计一个恒力弹簧支吊架。 刚性支架位移标准为了经济(采购、安装及维护)及防振。一
34、般刚性支架比弹簧支吊架更好。因此,当可以在某个位置选择刚性支架来代替弹簧支吊架时,工程师通常希望这种情况发生。弹簧支吊架的定义是:“通过热位移来支承给定载荷的约束”。如果热位移为零或非常小,那么可以假定用刚性支架来代替弹簧。假如周围的管于与刚性吊杆相比相对较柔时,这的确是正确的。在某种程度上可以用这个标准来控制刚性支架的选择。在操作工况下计算弹簧处的垂直位移小于给定刚性支架位移标准时,都可以选择刚性支架并作用在其后的工况。注意:在泵或其他旋转设备的附近或者在立管上的弹簧支吊架位置可能并不希望如此,因为这可能造成大的管口载荷或管架的热态锁死或托空。 释放固定架约束通常弹簧支吊架设计的一个主要目的
35、是使由于重量造成的设备管口载荷最小。这可以通过在离设备管日最近的弹簧位置强加一个不平衡的热态载荷(通常是过载的)来实现。这个不平衡力作用在管口,因而消除通常在自然分布条件下加在管口上的一些重力,在理想情况下,不平衡的弹簧力可以使设备管口上的载荷尽量接近零。为了施加这个不平衡力,在约束重量情况中,设备管口的固定架通常被“释放”,使其所有重量都加在最近弹簧支吊架的热态载荷上。对于在距离被释放管口的水平方向三倍管径内没有弹簧支吊架的管系要保守地使用这个方法。当在固定点约束点释放Y方向以外的方向时应特别小心,因为释放附加的自由度可能造成大的倾斜及垂直位移,使得弹簧的设计载荷不真实。 弹簧表这一选项用来
36、指定使用哪个制造商的弹簧,以及在表内与选择弹簧有关的特定设计标准。这些选型标准包括: l)使用最大载荷范围(相对于建议范围); 2)使弹簧在表内居中; 3)冷态(相对于热态)载荷设计。 已有安装空间在特定情况下,管顶和高处型钢之间或管底与下面基础或平台之间的距离,决定了可能用在某些特定位置的弹簧支吊架的类型(及数量)。这个值可以在个别的弹簧位置给定,以用于弹簧选型。 “己有安装空间”和“允许弹簧数目”选项一起允许用户设计多弹簧支吊架系统。 允许弹簧数量如果在一个给定的弹簧位置处有多个弹簧,用户可以在这里指定弹簧的数量。同样,用户可以指定允许的最多弹簧数(如果CAESARII必须分解载荷以满足空
37、间标准)。在多弹簧情况下,CAESARII将在所有弹簧间均匀分配载荷。 用户指定的操作载荷在某些管系中,程序选择的弹簧操作(或热态)载荷不能消除设备管口载荷以满足设计要求。在这种情况下,用户可以强加一个(较高或较低的)热态载荷,覆盖程序计算值以试图重新调整重量分布并使设备载荷能满足许用值。这时用户的输入通常是程序弹簧选择法提议的初始值变化。 旧弹簧重新设计当部分管系重新设计时,最好尽最大可能选择系统中已有的弹簧。当旧弹簧可以使用时,用户必须确定新的载荷范围,这样只需在现场重新调整弹簧即可。当已有弹簧不能用时,建议使用新的。旧弹簧重新设计选项允许用户完成这一工作。 多工况弹簧支吊架设计这个选项适用于当管系有多个不同的热状态,并且进行弹簧支吊架设计时必须考虑每个状态的情况。 CAESARll中用于选择弹簧的设计工况有: 按热态载荷工况1设计: 按热态载荷工况2设计; 按热态载荷工况3设计; 按最大操作载荷设计: 按最大位移设计; 按平均载荷和平均位移设计; 按最大载荷和最大位移设计。问 题 集 锦北京艾思弗计算机软件公司2002年4月12日北京艾思弗计算机软件公司