《第四讲时间序列分析的预处理课件.ppt》由会员分享,可在线阅读,更多相关《第四讲时间序列分析的预处理课件.ppt(58页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第四讲时间序列分析的预处理第1页,此课件共58页哦获获得得观观察察值值序序列列平稳性平稳性检验检验差分差分运算运算YN纯随机纯随机检验检验Y分分析析结结束束N拟合拟合ARMA模型模型时间序列的预处理时间序列的预处理(续续)第2页,此课件共58页哦1.平稳性定义平稳性定义知识回顾知识回顾若时间序列有有穷的二阶矩,且若时间序列有有穷的二阶矩,且 Xt 满足如下两个条件:满足如下两个条件:则称该时间序列为平稳序列。则称该时间序列为平稳序列。包括严平稳序列和宽平稳序列。包括严平稳序列和宽平稳序列。四、四、平稳性检验平稳性检验第3页,此课件共58页哦在对实际的时间序列进行建模之前,应首先检验序在对实际的
2、时间序列进行建模之前,应首先检验序列是否平稳,若序列非平稳,应先通过适当变换将列是否平稳,若序列非平稳,应先通过适当变换将其化为平稳序列,然后再进行模型的建立。其化为平稳序列,然后再进行模型的建立。2.2.关于非平稳序列的处理关于非平稳序列的处理关于非平稳序列的处理关于非平稳序列的处理第4页,此课件共58页哦序列的非平稳包括序列的非平稳包括均值非平稳均值非平稳和和方差非平方差非平 稳。稳。均值非平稳序列平稳化的方法:均值非平稳序列平稳化的方法:差分变换。差分变换。方差非平稳序列平稳化的方法:方差非平稳序列平稳化的方法:对数变换、平对数变换、平方根变换方根变换等。等。第5页,此课件共58页哦3.
3、平稳性检验方法平稳性检验方法非参数检验法非参数检验法特征根检验法特征根检验法单位根检验法单位根检验法(1)通过时间序列的趋势图来判断通过时间序列的趋势图来判断(2)通过自相关函数通过自相关函数(ACF)判断判断图检验方法图检验方法第6页,此课件共58页哦 非参数检验法:非参数检验法:游程检验游程检验一个游程定义为一个具有相同符号的连续串,在它前后相接的一个游程定义为一个具有相同符号的连续串,在它前后相接的是与其不同的符号或完全无符号。是与其不同的符号或完全无符号。例如,观察的结果用加、减标志表示,得到一组这样的例如,观察的结果用加、减标志表示,得到一组这样的记录顺序:记录顺序:+-+-+-+这
4、个样本的观察结果共有这个样本的观察结果共有7个游程。个游程。(1)(1)什么是游程什么是游程什么是游程什么是游程第7页,此课件共58页哦(2)游程检验的基本思想游程检验的基本思想如果符号序列是随机的,那么如果符号序列是随机的,那么“+”和和“-”将随机出现,将随机出现,因此它的游程数既不会太多,又不会太少;反过来说如因此它的游程数既不会太多,又不会太少;反过来说如果符号序列的游程总数太少或太多,我们就可以认为时果符号序列的游程总数太少或太多,我们就可以认为时间序列存在某种趋势性或周期性间序列存在某种趋势性或周期性。第8页,此课件共58页哦第9页,此课件共58页哦a.小样本情况小样本情况零假设零
5、假设H0:加号和减号以随机的方式出现:加号和减号以随机的方式出现检验方法:取显著性水平检验方法:取显著性水平(一般取一般取0.05),查单样本游程检验表,得查单样本游程检验表,得出抽样分布的临界值出抽样分布的临界值rL、rU判定判定:若:若rL r rU 或或r rL则拒绝零假设,序列是非平稳的。则拒绝零假设,序列是非平稳的。(3)(3)检验方法检验方法检验方法检验方法第10页,此课件共58页哦b.大样本情况大样本情况零假设零假设H0:加号和减号以随机的方式出现:加号和减号以随机的方式出现检验方法:给定显著性水平检验方法:给定显著性水平(一般取一般取0.05)查标准正态分布表,得查标准正态分布
6、表,得出抽样分布的临界值出抽样分布的临界值-z,+z。并计算统计量。并计算统计量:判定:若判定:若-z z3时都落入置信区间时都落入置信区间,且逐渐趋于,且逐渐趋于零,则该时间序列具有零,则该时间序列具有平稳性平稳性;若时间序列的自相关函数更多地若时间序列的自相关函数更多地落在置信区间外面落在置信区间外面,则该时间序,则该时间序列就列就不具有平稳性不具有平稳性。第20页,此课件共58页哦l 若序列无趋势,但是具有季节性,若序列无趋势,但是具有季节性,那末对于按月采集的数那末对于按月采集的数据,时滞据,时滞12,24,36的自相关系数达到的自相关系数达到最大最大(如果数据如果数据是按季度采集,则
7、最大自相关系数出现在是按季度采集,则最大自相关系数出现在4,8,12,),并,并且随着且随着时滞的增加变得较小时滞的增加变得较小。若序列是有趋势的,且具有季节性若序列是有趋势的,且具有季节性,其自相关函数特性类,其自相关函数特性类似于有趋势序列,但它们是摆动的,对于按月数据,在时滞似于有趋势序列,但它们是摆动的,对于按月数据,在时滞12,24,36,等处具有等处具有峰态峰态;如果时间序列数据是按季;如果时间序列数据是按季节的,则峰出现在时滞节的,则峰出现在时滞4,8,12,等处。等处。第21页,此课件共58页哦 应用举例应用举例例例1 时序图时序图检验检验1951年年2005年我国居民住院消费
8、价格指数的平年我国居民住院消费价格指数的平稳性稳性例例2 时序图时序图检验检验1990年年1月月1997年年12月我国药品总产值序月我国药品总产值序列的平稳性列的平稳性第22页,此课件共58页哦例例1 居民住院消费价格指数时序图居民住院消费价格指数时序图平平稳稳序序列列第23页,此课件共58页哦例例2 药品总产值时序图药品总产值时序图非非平平稳稳序序列列第24页,此课件共58页哦(1)选择菜单)选择菜单GraphSequence。绘制序列图的基本操作绘制序列图的基本操作第25页,此课件共58页哦(2)将需绘图的序列变量选入)将需绘图的序列变量选入Variables框中。框中。第26页,此课件共
9、58页哦(3)在)在Time Axis Labels框中指定横轴(时间轴)标志变量。框中指定横轴(时间轴)标志变量。该标志变量默认的该标志变量默认的是日期型变量。是日期型变量。(4)在)在Transform框中指定对变量进行怎样的变化处理。框中指定对变量进行怎样的变化处理。其中其中Natural log transform表示对数据取自然对数,表示对数据取自然对数,Difference表示对数据进行表示对数据进行n阶(默认阶(默认1阶)差分,阶)差分,Seasonally difference表示对数据进行季节差分。表示对数据进行季节差分。第27页,此课件共58页哦(5)单击)单击Time L
10、ines 按钮定义序列图中需要特别标注的时间点按钮定义序列图中需要特别标注的时间点,给出,给出了无标注(了无标注(No reference Lines)、在某变量变化时标注()、在某变量变化时标注(Line at each change of)、在某个日期标注()、在某个日期标注(Line at date)三项供选择。)三项供选择。第28页,此课件共58页哦(6)单击)单击Format 按钮定义图形的格式,按钮定义图形的格式,可选择横向或纵向序列图;可选择横向或纵向序列图;对于单变量序列图,可选择绘制线图或面积图,还可选择在图对于单变量序列图,可选择绘制线图或面积图,还可选择在图中绘制序列的均
11、值线;对多变量的序列图,可选择将不同变量中绘制序列的均值线;对多变量的序列图,可选择将不同变量在同一时间点上的点用直线连接起来。在同一时间点上的点用直线连接起来。第29页,此课件共58页哦第30页,此课件共58页哦通过自相关函数通过自相关函数(ACF)进一步判断进一步判断一个时间序列的一个时间序列的样本自相关函数样本自相关函数定义为:定义为:可以证明:可以证明:随着随着k的增加,样本自相关函数下降且趋于零。的增加,样本自相关函数下降且趋于零。()()()=-=+-=nttkntkttXXXXXX121第31页,此课件共58页哦序列的自相关函数序列的自相关函数(ACF)要么是要么是截尾的截尾的,
12、要么是,要么是拖尾的拖尾的。因此我们可以根据这个特性来判断时间序列是否为平稳序列。因此我们可以根据这个特性来判断时间序列是否为平稳序列。从下降速度来看,平稳序列要比非平稳序列快得多。从下降速度来看,平稳序列要比非平稳序列快得多。平稳序列的自相关系数常常表现出平稳序列的自相关系数常常表现出截尾截尾,而非平稳序列,而非平稳序列的自相关系数常常是的自相关系数常常是拖尾的拖尾的。第32页,此课件共58页哦 应用举例应用举例例例3 自相关图自相关图检验检验1951年年2005年我国居民住院消费价格指数年我国居民住院消费价格指数的平稳的平稳性性例例4 自相关图自相关图检验检验1990年年1月月1997年年
13、12月我国药品总产值序月我国药品总产值序列的平稳性列的平稳性第33页,此课件共58页哦例例2 居民住院消费价格指数自相关图居民住院消费价格指数自相关图平平稳稳序序列列自自相相关关图图第34页,此课件共58页哦例例3 药品总产值相关图药品总产值相关图非非平平稳稳序序列列自自相相关关图图第35页,此课件共58页哦(1)选择菜单)选择菜单GraphTimeSeriesAutocorrelations。绘制自相关函数图的基本操作绘制自相关函数图的基本操作第36页,此课件共58页哦(2)将需绘制的序列变量选入)将需绘制的序列变量选入Variables框框第37页,此课件共58页哦(3)在)在Displa
14、y框选择绘制哪种图形,框选择绘制哪种图形,其中其中Autocorrelations表示表示绘制自相关函数图;绘制自相关函数图;Partial autocorrelations表示绘制偏自表示绘制偏自相相 关函数图。一般可同时绘制两种图形。关函数图。一般可同时绘制两种图形。第38页,此课件共58页哦(4)单击)单击Options按钮定义相关参数,按钮定义相关参数,Maximum Number of Lags表示相关函数值包含表示相关函数值包含的最大滞后期的最大滞后期(时间间隔时间间隔h)。一般选择两个最大周期以上的数据。在。一般选择两个最大周期以上的数据。在Standard Error Meth
15、od框中指定计算相关系数标准差的方法,确定相关函数图形中的置信区框中指定计算相关系数标准差的方法,确定相关函数图形中的置信区间。其中间。其中Independence model表示假设序列是白噪声的过程;表示假设序列是白噪声的过程;Bartletts approximation表示用估计自相关系数和偏自相关系数方差的近似式计算方差。该方法适合序列表示用估计自相关系数和偏自相关系数方差的近似式计算方差。该方法适合序列是是k-1阶的移动平均过程,且标准差随阶数的增大而增大的情况。阶的移动平均过程,且标准差随阶数的增大而增大的情况。第39页,此课件共58页哦(5)选中)选中Display autoc
16、orrelation at periodic lags表示只显示时间序列表示只显示时间序列周期整数倍处的相关函数值。一般如果只考虑序列中的周期因周期整数倍处的相关函数值。一般如果只考虑序列中的周期因素可选中该项。否则该步可略去。最后就素可选中该项。否则该步可略去。最后就OK了。了。第40页,此课件共58页哦五五 纯随机性检验纯随机性检验(一)纯随机序列的定义(一)纯随机序列的定义(二)纯随机性的性质(二)纯随机性的性质(三)纯随机性检验(三)纯随机性检验第41页,此课件共58页哦(一)纯随机序列的定义(一)纯随机序列的定义纯随机序列也称为纯随机序列也称为白噪声序列白噪声序列,它满足如下两条性,
17、它满足如下两条性质质并不是所有平稳序列都值得建模!并不是所有平稳序列都值得建模!纯随机序列无法预测,无法进一步建模!纯随机序列无法预测,无法进一步建模!方差方差齐性齐性纯随纯随机性机性0第42页,此课件共58页哦标准正态白噪声序列时序图标准正态白噪声序列时序图 第43页,此课件共58页哦(二)白噪声序列的性质(二)白噪声序列的性质 纯随机性纯随机性 各序列值之间没有任何相关关系,即为各序列值之间没有任何相关关系,即为“没有记忆没有记忆”的序列的序列 方差齐性方差齐性(平稳平稳)根据马尔可夫定理,只有方差齐性假定成立时,用最小二乘法根据马尔可夫定理,只有方差齐性假定成立时,用最小二乘法得到的未知
18、参数估计值才是准确的、有效的得到的未知参数估计值才是准确的、有效的第44页,此课件共58页哦(三)纯随机性检验(三)纯随机性检验 1.检验原理检验原理2.假设条件假设条件3.检验统计量检验统计量 4.判别原则判别原则5.应用举例应用举例第45页,此课件共58页哦1.检验原理检验原理:Barlett定理定理 如果一个时间序列是纯随机的,得到一个观察期数为如果一个时间序列是纯随机的,得到一个观察期数为 的的观察序列,那么该序列的延迟非零期的样本自相关系数将观察序列,那么该序列的延迟非零期的样本自相关系数将近似服从近似服从均值为零均值为零,方差为序列观察期数倒数方差为序列观察期数倒数的的正态分正态分
19、布布第46页,此课件共58页哦Bartlett公式公式若若 在在 时趋于零,则在时趋于零,则在N足够大的足够大的情况下其方差为情况下其方差为并且,当并且,当 时,时,近似于正态分布近似于正态分布。47自相关自相关系数系数协方差函数协方差函数协方差函数协方差函数自相关函数自相关函数自相关函数自相关函数第47页,此课件共58页哦2.假设条件假设条件原假设:原假设:延迟期数小于或等于延迟期数小于或等于 期的序列值之间相互期的序列值之间相互独立独立备择假设:备择假设:延迟期数小于或等于延迟期数小于或等于 期的序列值之间期的序列值之间有相关性有相关性 第48页,此课件共58页哦3.检验统计量检验统计量Q
20、统计量统计量(大样本)(大样本)LB统计量统计量(小样本)(小样本)第49页,此课件共58页哦4.判别原则判别原则拒绝原假设拒绝原假设当检验当检验统计量大于统计量大于 分位点分位点,或该统计量的,或该统计量的P值小于值小于 时时,则可以以,则可以以 的置信水平拒绝原假设,的置信水平拒绝原假设,则认为该序列为非白噪声序列则认为该序列为非白噪声序列接受原假设接受原假设当检验统计量当检验统计量小于小于 分位点,或该统计量的分位点,或该统计量的P值值大于大于 时,则认为在时,则认为在 的置信水平下无法拒绝原假的置信水平下无法拒绝原假设,即不能拒绝序列为纯随机序列的假定设,即不能拒绝序列为纯随机序列的假
21、定 第50页,此课件共58页哦若若 为白噪声的自相关系数,则在为白噪声的自相关系数,则在M=0根据统计检验的根据统计检验的 准则,当准则,当时,便可认为时,便可认为 为为0的可能性是的可能性是95%,从而接受,从而接受 这一估计,即数据是独立的这一估计,即数据是独立的。51或或或或第51页,此课件共58页哦5.应用举例应用举例例例3:标准正态白噪声序列纯随机性检验。:标准正态白噪声序列纯随机性检验。例例4 对对19491998年北京市流感发病率序列年北京市流感发病率序列做白噪声检验。做白噪声检验。例例5 对对1950年年1998年北京市城乡居民医年北京市城乡居民医疗保险占比例序列的平稳性与纯随
22、机性进疗保险占比例序列的平稳性与纯随机性进行检验。行检验。第52页,此课件共58页哦例例3:标准正态白噪声序列纯随机性检验:标准正态白噪声序列纯随机性检验样样样样本本本本自自自自相相相相关关关关图图图图第53页,此课件共58页哦检验结果检验结果延迟延迟Q统计量检验统计量检验Q统计量值统计量值P值值延迟延迟6期期4.34350.63延迟延迟12期期14.1710.29由于由于P值显著大于显著性水平值显著大于显著性水平 ,所以该序列不能拒绝纯随,所以该序列不能拒绝纯随机的原假设。机的原假设。第54页,此课件共58页哦例例4 19491998年北京市流感发病率序列的年北京市流感发病率序列的白噪声检验
23、。白噪声检验。样样样样本本本本自自自自相相相相关关关关图图图图第55页,此课件共58页哦例例4 白噪声检验结果白噪声检验结果延迟阶数延迟阶数Q统计量检验统计量检验Q检验统计量检验统计量的值的值P值值65.3840.496126.17210.907由于由于P值显著大于显著性水平值显著大于显著性水平 ,所以不能拒绝序列纯随机的原假设。,所以不能拒绝序列纯随机的原假设。因而可以认为北京市流感发病的变动属于纯随机波动。这说明我们很难因而可以认为北京市流感发病的变动属于纯随机波动。这说明我们很难根据历史信息预测未来年份的流感发病情况。根据历史信息预测未来年份的流感发病情况。第56页,此课件共58页哦例例5 时序图时序图第57页,此课件共58页哦例例5 自相关图自相关图第58页,此课件共58页哦