传感器原理与应用A实验指导书.doc

上传人:飞****2 文档编号:50470406 上传时间:2022-10-15 格式:DOC 页数:26 大小:757.50KB
返回 下载 相关 举报
传感器原理与应用A实验指导书.doc_第1页
第1页 / 共26页
传感器原理与应用A实验指导书.doc_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《传感器原理与应用A实验指导书.doc》由会员分享,可在线阅读,更多相关《传感器原理与应用A实验指导书.doc(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、传感器与检测技术实验指导书机械电子工程教研室叶建雄2011-10-10HCX-2000系列传感器与检测技术实验台HCX-2000型传感器与检测技术实验台说明书一、实验台的组成HCX-2000型传感器与检测技术实验台由主机箱、传感器、实验电路(实验模板)、转动源、振动源、温度源、数据采集卡及处理软件、实验桌等组成。1、主机箱:提供高稳定的15V、5V、5V、2V10V(步进可调)、2V24V(连续可调)直流稳压电源;音频信号源(音频振荡器)1KHz10KHz(连续可调);低频信号源(低频振荡器)1Hz30Hz(连续可调);传感器信号调理电路;智能调节仪;计算机通信口;主机箱上装有电压、气压等相关

2、数显表。其中,直流稳压电源、音频振荡器、低频振荡器都具有过载保护功能,在排除接线错误后重新开机恢复正常工作。主机箱右侧面装有供电电源插板及漏电保护开关。2、振动源(动态应变振动梁与振动台):振动频率3Hz30Hz可调(谐振频率9Hz12 Hz左右);3、转动源:手动控制0转/分2400转分、自动控制3002200转分。4、温度源:常温200。 5、气压源:020Kpa(连续可调)。6、传感器:基本型有箔式应变片(350)传感器(秤重200g)、扩散硅压力传感器(20Kpa)、差动变压器(4mm)、电容式位移传感器(2.5mm)、霍尔式位移传感器(1mm)、霍尔式转速传感器(2400转/分)、磁

3、电转速传感器(250转/分2400转/分)、压电式传感器、电涡流传感器(1mm)、光纤位移传感器(1mm)、光电转速传感器(2400转/分)、集成温度(AD590)传感器(室温120)、K热电偶(室温150)、E热电偶(室温150)、Pt100铂电阻(室温150)、Cu50铜电阻(室温100)、湿敏传感器(1095RH)、气敏传感器(5099VJppm)等。增强型:基本型基础上可选配扭矩传感器(25Nm)、超声位移传感器(2001500mm)、PSD位置传感器(2mm)、CCD电荷耦合器件、光栅位移传感器(25mm)、红外热释电传感器、指纹传感器(演示)等。7、调理电路(实验模板):基本型有电

4、桥及调平衡网络、差动放大器、电压放大器、电荷放大器、电容变换器、电涡流变换器、光电变换器、温度变换器、移相器、相敏检波器、低通滤波器。增强型增加与选配传感器配套的实验模板。8、数据采集处理软件,另附。9、实验台:尺寸为1600800750mm,实验台桌上预留了计算机及示波器安放位置。二、电路原理实验电路原理已印刷在面板上(实验模板上) ,实验接线图参见文中的具体实验内容。三、使用方法1、开机前将电压表显示选择旋钮打到2V档;电流表显示选择旋钮打到200mA档;步进可调直流稳压电源旋钮打到2V档;其余旋钮都打到中间位置。2、将AC220V电源线插头插入市电插座中,合上电源开关,数显表显示0000

5、,表示实验台已接通电源。3、做每个实验前应先阅读实验指南,每个实验均应在断开电源的状态下按实验线路接好连接线(实验中用到可调直流电源时,应在该电源调到实验值后再接到实验线路中),检查无误后方可接通电源。4、合上调节仪(器)电源开关,设置调节仪(器)参数;调节仪(器)的PV窗显示测量值;SV窗显示设定值(具体内容参见实验)。5、数据采集卡及处理软件使用方法另附说明。四、仪器维护及故障排除1、维护防止硬物撞击、划伤实验台面;防止传感器跌落地面。实验完毕要将传感器、配件及连线全部整理放置好。2、故障排除开机后数显表都无显示,应查AC220V电源有否接通;主机箱侧面AC220V 插座中的保险丝是否烧断

6、。如都正常,则更换主机箱中主机电源。转动源不工作,则手动输入12V电压,如不工作,更换转动源;如工作正常,应查调节仪设置是否准确;控制输出Vo有无电压,如无电压,更换主机箱中的转速控制板。振动源不工作,检查主机箱面板上的低频振荡器有无输出,如无输出,更换信号板;如有输出,更换振动源的振荡线圈。温度源不工作,检查温度源电源开关有否打开;温度源的保险丝是否烧断;调节仪设置是否准确。如都正常,则更换温度源。五、注意事项1、在实验前务必详细阅读实验指南。2、严禁用酒精、有机溶剂或其它具有腐蚀性溶液擦洗主机箱及面板。3、请勿将主机箱的电源、信号源输出端与地()短接,因短接时间长易造成电路故障。4、请勿将

7、主机箱的电源引入实验电路时接错。5、在更换接线时,应断开电源,只有在确保接线无误后方可接通电源。6、实验完毕后,请将传感器及附件放回原处。7、如果实验台长期未通电使用,在实验前先通电十分钟预热,再检查按一次漏电保护按钮是否有效。8、实验接线时,要握住手柄插拔实验线,不能拉扯实验线。六、随机附件详见装箱清单。 实验1 应变片全桥性能实验一、实验目的:了解应变片全桥工作特点及性能。二、基本原理:应变片基本原理参阅实验(一)。应变片全桥特性实验原理如图31所示。应变片全桥测量电路中,将应力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。当应变片初始阻值:R1R2R3R4,其变化值R1R2R

8、3R4时,其桥路输出电压Uo(RR)EKE。其输出灵敏度比半桥又提高了一倍,非线性得到改善。图31应变片全桥特性实验接线示意图三、需用器件和单元:主机箱中的2V10V(步进可调)直流稳压电源、15V直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。四、实验步骤:实验步骤与方法(除了按图32示意接线外)参照实验(二),将实验数据填入表3作出实验曲线并进行灵敏度和非线性误差计算。实验完毕,关闭电源。图32 应变片全桥性能实验接线示意图表3全桥性能实验数据重量(g)电压(mV)五、思考题:测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1R3,R2R4,而R1R2时,是否可以组成全桥

9、:(1)可以(2)不可以。附注:实验(一) 应变片单臂电桥性能实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。1、应变片的电阻应变效应

10、所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为时,根据电阻的定义式得 (11)当导体因某种原因产生应变时,其长度L、截面积A和电阻率的变化为dL、dA、d相应的电阻变化为dR。对式(11)全微分得电阻变化率 dR/R为: (12)式中:dL/L为导体的轴向应变量L; dr/r为导体的横向应变量r 由材料力学得: L= - r (13)式中:为材料的泊松比,大多数金属材料的泊松比为0.30.5左右;负号表示两者的变化方向相反。将式(13)代入式(12

11、)得: (14)式(14)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。2、应变灵敏度 它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。 (1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取 (15)其灵敏度系数为:K= 金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。金属导体的电阻应变灵敏度一般在2左右。 (2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R100kHz)输入到点,由低电平E1跃到高电平E2时,电容CX1和CX2两端电压均由E1充到E2。充电电荷一路由点经D3到b点,再

12、对CX1充电到O点(地);另一路由由点经C4到c点,再经D5到d点对CX2充电到O点。此时,D4和D6由于反偏置而截止。在t1充电时间内,由到c点的电荷量为(b经D4到c是不可能的):Q1CX2(E2-E1) (161) 当高频激励电压由高电平E2返回到低电平E1时,电容CX1和CX2均放电。CX1经b点、D4、c点、C4、点、L1放电到O点;CX2经d点、D6、L1放电到O点。在t2放电时间内由c点到点的电荷量为:Q2CX1(E2-E1) (162)当然,(161)式和(162)式是在C4电容值远远大于传感器的CX1和CX2电容值的前提下得到的结果。电容C4的充放电回路由图162中实线、虚线

13、箭头所示。在一个充放电周期内(t1t2),由c点到点的电荷量为:Q2-Q1(CX1-CX2)(E2-E1)CX E (163)式中:CX1与CX2的变化趋势是相反的(传感器的结构决定的,是差动式)。设激励电压频率f1/T,则流过ac支路输出的平均电流i为:iQ/T=ffCX E (164) 式中:E激励电压幅值;CX传感器的电容变化量。由(164)式可看出:f、E一定时,输出平均电流i与CX成正比,此输出平均电流i经电路中的电感L2、电容C5滤波变为直流I输出,再经Rw转换成电压输出Vo1I Rw。由传感器原理已知C与X位移成正比,所以通过测量电路的输出电压Vo1就可知X位移。2、 电容式位移

14、传感器实验原理方块图如图163图163电容式位移传感器实验方块图三、需用器件与单元:主机箱15V直流稳压电源、电压表;电容传感器、电容传感器实验模板、测微头。四、实验步骤:1、按图164示意安装、接线。图164 电容传感器位移实验安装、接线示意图2、将实验模板上的Rw调节到中间位置(方法:逆时针转到底再顺时传圈)。3、将主机箱上的电压表量程切换开关打到2V档,检查接线无误后合上主机箱电源开关,旋转测微头改变电容传感器的动极板位置使电压表显示0V ,再转动测微头(同一个方向)6圈,记录此时的测微头读数和电压表显示值为实验起点值。以后,反方向每转动测微头1圈即X=0.5mm位移读取电压表读数(这样

15、转12圈读取相应的电压表读数),将数据填入表16(这样单行程位移方向做实验可以消除测微头的回差)。表16 电容传感器位移实验数据X (mm) V(mV)4、根据表16数据作出XV实验曲线并截取线性比较好的线段计算灵敏度S=VX和非线性误差及测量范围。实验完毕关闭电源开关。实验4 K热电偶测温性能实验一、实验目的:了解热电偶测温原理及方法和应用。 二、基本原理:1821年德国物理学家赛贝克(TJSeebeck)发现和证明了两种不同材料的导体A和B组成的闭合回路,当两个结点温度不相同时,回路中将产生电动势。这种物理现象称为热电效应(塞贝克效应)。热电偶测温原理是利用热电效应。 如图321所示,热电

16、偶就是将A和B二种不同金属材料的一端焊接而成。A和B称为热电极,焊接的一端是接触热场的T端称为工作端或测量端,也称热端;未焊接的一端处在温度T0称为自由端或参考端,也称冷端(接引线用来连接测量仪表的 图321热电偶两根导线C是同样的材料,可以与A和B不同种材料)。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,如常用的(镍铬-镍硅或镍铝)、(镍铬-康铜)、(铜-康铜)等等,并且有相应的分度表即参考端温度为0时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的

17、热电动势值再查分度表得到相应的温度值。热电偶一般应用在冶金、化工和炼油行业,用于测量、控制较高的温度。 三、需用器件与单元:主机箱中的智能调节器单元、电压表、转速调节024V电源、15V直流稳压电源;温度源、Pt100热电阻(温度控制传感器)、热电偶(温度特性实验传感器)、温度传感器实验模板;压力传感器实验模板(作为直流mV信号发生器)。四、实验步骤:热电偶使用说明:热电偶由、热电极材料及直径(偶丝直径)决定其测温范围,如(镍铬-镍硅或镍铝)热电偶,偶丝直径3.2mm时测温范围01200,本实验用的热电偶偶丝直径为0.5mm,测温范围800;(镍铬-康铜), 偶丝直径3.2mm时测温范围-20

18、0+750,实验用的热电偶偶丝直径为0.5mm,测温范围-200+350。由于温度源温度200,所以,所有热电偶实际测温实验范围180。从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0时才能正确测量测量端的温度,否则存在着参考端所处环境温度值误差。热电偶的分度表(见附录)是定义在热电偶的参考端(冷端)为0时热电偶输出的热电动势与热电偶测量端(热端)温度值的对应关系。热电偶测温时要对参考端(冷端)进行修正(补偿),计算公式:E(t, t0)=E(t, t0)+E(t0, t0)式中:E(t, t0)-热电偶测量端温度为,参考端温度为t0=0时的热电势值;

19、E(t, t0)-热电偶测量温度,参考端温度为t0不等于0时的热电势值; E(t0, t0)-热电偶测量端温度为t0,参考端温度为t0=0时的热电势值。 例:用一支分度号为(镍铬-镍硅)热电偶测量温度源的温度,工作时的参考端温度(室温) t0=20,而测得热电偶输出的热电势(经过放大器放大的信号,假设放大器的增益A=10)32.7mv,则E(t, t0)=32.7mV/10=3.27mV,那么热电偶测得温度源的温度是多少呢? 解:由附表3 查得: E(t0, t0)=E(20,0)=0.798mV已测得 E(t, t0)=32.7mV/10=3.27mV 故 E(t, t0)=E(t, t0)

20、+E(t0, t0)= 3.27mV+0.798mV=4.068mV热电偶测量温度源的温度可以从分度表中查出,与4.068mV所对应的温度是100。附表3:K热电偶分度表 分度号:K (参考端温度为0) 测量端温度() 0 1 2 3 4 5 6 7 8 9 热 电 动 势 (mV) 00.0000.0390.0790.1190.1580.1980.2380.2770.3170.357100.3970.4370.4770.5170.5570.5970.6370.6770.7180.758200.7980.8380.8790.9190.9601.0001.0411.0811.1221.16230

21、1.2031.2441.2851.3251.3661.4071.4481.4891.5291.570401.6111.6521.6931.7341.7761.8171.8581.8991.9491.981502.0222.0642.1052.1462.1882.2292.2702.3122.3532.394602.4362.4772.5192.5602.6012.6432.6842.7262.7672.809702.8502.8922.9332.9753.0163.0583.1003.1413.1833.224803.2663.3073.3493.3903.4323.4733.5153.556

22、3.5983.639903.6813.7223.7643.8053.8473.8883.9303.9714.0124.0541004.0954.1374.1784.2194.2614.3024.3434.3844.4264.4671104.5084.5494.5904.6324.6734.7144.7554.7964.8374.8781204.9194.9605.0015.0425.0835.1245.1645.2055.2465.2871305.3275.3685.4095.4505.4905.5315.5715.6125.6525.6931405.7335.7745.8145.8555.8

23、955.9365.9766.0166.0576.0971506.1376.1776.2186.2586.2986.3386.3786.4196.4596.4991606.5396.5796.6196.6596.6996.7396.7796.8196.8596.8991706.9396.9797.0197.0597.0997.1397.1797.2197.2597.2991807.3381、温度传感器实验模板放大器调零:按图322示意接线。将主机箱上的电压表量程切换开关打到2V档,检查接线无误后合上主机箱电源开关,调节温度传感器实验模板中的RW2(增益电位器)顺时针转到底,再调节RW3(调零电位

24、器)使主机箱的电压表显示为0(零位调好后RW3电位器旋钮位置不要改动)。关闭主机箱电源。图322温度传感器实验模板放大器调零接线示意图2、调节温度传感器实验模板放大器的增益A为100倍: 利用压力传感器实验模板的零位偏移电压作为温度实验模板放大器的输入信号来确定温度实验模板放大器的增益A。按图323示意接线,检查接线无误后合上主机箱电源开关,调节压力传感器实验模板上的RW2(调零电位器),使压力传感器实验模板中的放大器输出电压为0.010V(用主机箱电压表测量);再将0.010V电压输入到温度传感器实验模板的放大器中,再调节温度传感器实验模板中的增益电位器RW2(小心:不要误碰调零电位器RW3),使温度传感器实验模板放大器的输出电压为1.000V(增益调好后RW2电位器旋钮位置不要改动)。关闭电源。图323 调节温度实验模板放大器增益A接线示意图3、测量室温值t0:按图324接线(不要用手抓捏Pt100热电阻测温端),Pt100热电放在桌面上。检查接线无误后,将调节器的控制对象开关拨到Rt.Vi位置后再合上主机箱电源开关和调节器电源开关。稍待一分钟左右,记录下调节器PV窗显示的室温值(上排数码管显示值)为t0,关闭调节器电源和主机箱电源开关。将Pt100热电阻插入温度源中。 图324室温测量接线示意图 4、热电偶测室温(

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁