《《中考课件初中数学总复习资料》专题21 一元二次方程(原卷版)1.docx》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》专题21 一元二次方程(原卷版)1.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、专题21 一元二次方程知识点1:一元二次方程的定义1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程2.一元二次方程的一般形式 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0)这种形式叫做一元二次方程的一般形式一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项 知识点2:一元二次方程的解法(1)开平方法:运用开平方法解形如(x+m)2=n(n0)的方程;领会降次转化的数学思想(2)配方法:解一元二次
2、方程的一般步骤是现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q0,方程的根是x=-p±q;如果q0,方程无实根介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公
3、式法”以后,学生对这个内容会有进一步的理解。(3)公式法:一元二次方程ax2+bx+c=0(a0)的根由方程的系数a、b、c而定,因此: 解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac0时,将a、b、c代入式子x=就得到方程的根(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。)这个式子叫做一元二次方程的求根公式利用求根公式解一元二次方程的方法叫公式法(4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。主要用提公因式法、平方差公式。知识点3
4、:解有关一元二次方程的实际问题的一般步骤:第1步:审题。认真读题,分析题中各个量之间的关系。第2步:设未知数。根据题意及各个量的关系设未知数。第3步:列方程。根据题中各个量的关系列出方程。第4步:解方程。根据方程的类型采用相应的解法。第5步:检验。检验所求得的根是否满足题意。第6步:答。1.对本章知识点回顾的思维导图2.理解韦达定理 韦达定理就是研究一元二次方程根与系数的关系的理论。 如果方程的两个实数根是,那么,。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。【例题1】(2020临沂)一元二
5、次方程x24x80的解是()Ax12+23,x2223Bx12+23,x2223Cx12+22,x2222Dx123,x223【例题2】(2020泸州)已知x1,x2是一元二次方程x24x70的两个实数根,则x12+4x1x2+x22的值是【例题3】(2020孝感)已知关于x的一元二次方程x2(2k+1)x+12k220(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1x23,求k的值【例题4】(2020湘西州)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求工厂决定从2月份
6、起扩大产能,3月份平均日产量达到24200个(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?一元二次方程单元精品检测试卷本套试卷满分120分,答题时间90分钟一、选择题(每小题3分,共36分)1(2020凉山州)一元二次方程x22x的根为()Ax0Bx2Cx0或x2Dx0或x22(2020菏泽)等腰三角形的一边长是3,另两边的长是关于x的方程x24x+k0的两个根,则k的值为()A3B4C3或4D73(2020南京)关于x的方程(x1)(x+2)p2(p为常数)的根的情况,下列结论中正确的是()A两个正根B两个负根C一个正根,一个负根D无实数根4(2020泰
7、安)将一元二次方程x28x50化成(x+a)2b(a,b为常数)的形式,则a,b的值分别是()A4,21B4,11C4,21D8,695(2020黔西南州)已知关于x的一元二次方程(m1)x2+2x+10有实数根,则m的取值范围是()Am2Bm2Cm2且m1Dm2且m16(2020怀化)已知一元二次方程x2kx+40有两个相等的实数根,则k的值为()Ak4Bk4Ck±4Dk±27(2020鄂州)目前以5G等为代表的战略性新兴产业蓬勃发展某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到8.72万户设全市5G用户数年平均增长率为x,则x值为()A20%
8、B30%C40%D50%8(2020滨州)对于任意实数k,关于x的方程12x2(k+5)x+k2+2k+250的根的情况为()A有两个相等的实数根B没有实数根C有两个不相等的实数根D无法判定9(2020黔东南州)若菱形ABCD的一条对角线长为8,边CD的长是方程x210x+240的一个根,则该菱形ABCD的周长为()A16B24C16或24D4810(2020衢州)某厂家2020年15月份的口罩产量统计如图所示设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A180(1x)2461B180(1+x)2461C368(1x)2442D368(1+x)244211(202
9、0铜仁市)已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程x26x+k+20的两个根,则k的值等于()A7B7或6C6或7D612(2020遵义)已知x1,x2是方程x23x20的两根,则x12+x22的值为()A5B10C11D13二、填空题(每空3分,共36分)13(2020咸宁)若关于x的一元二次方程(x+2)2n有实数根,则n的取值范围是 14(2020泰州)方程x2+2x30的两根为x1、x2,则x1x2的值为 15(2020北京)已知关于x的方程x2+2x+k0有两个相等的实数根,则k的值是16(2020枣庄)已知关于x的一元二次方程(a1)x
10、22x+a210有一个根为x0,则a17(2020烟台)关于x的一元二次方程(m1)x2+2x10有两个不相等的实数根,则m的取值范围是 18(2020甘孜州)三角形的两边长分别为4和7,第三边的长是方程x28x+120的解,则这个三角形的周长是 19(2020扬州)方程(x+1)29的根是 20(2020上海)如果关于x的方程x24x+m0有两个相等的实数根,那么m的值是 21(2020天水)一个三角形的两边长分别为2和5,第三边长是方程x28x+120的根,则该三角形的周长为22(2020江西)若关于x的一元二次方程x2kx20的一个根为x1,则这个一元二次方程的另一个根为 23(2020
11、成都)关于x的一元二次方程2x24x+m-32=0有实数根,则实数m的取值范围是 24.(2019年山东省枣庄市)已知关于x的方程ax2+2x30有两个不相等的实数根,则a的取值范围是三、解答题(7个小题,共48分)25(6分)(2020徐州)(1)解方程:2x25x+3026(8分)(2020广东)已知关于x,y的方程组ax+23y=-103,x+y=4与x-y=2,x+by=15的解相同(1)求a,b的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x的方程x2+ax+b0的解试判断该三角形的形状,并说明理由27(8分)(2020随州)已知关于x的一元二次方程x2+(2m+1
12、)x+m20(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x2,且x1+x2+3x1x21,求m的值28(8分)(2020鄂州)已知关于x的方程x24x+k+10有两实数根(1)求k的取值范围;(2)设方程两实数根分别为x1、x2,且3x1+3x2=x1x24,求实数k的值29(8分)(2020南充)已知x1,x2是一元二次方程x22x+k+20的两个实数根(1)求k的取值范围(2)是否存在实数k,使得等式1x1+1x2=k2成立?如果存在,请求出k的值;如果不存在,请说明理由30(10分)(2020上海)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等求该商店去年8、9月份营业额的月增长率