《《中考课件初中数学总复习资料》考点11 二次函数-备战2020年中考数学考点一遍过.docx》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》考点11 二次函数-备战2020年中考数学考点一遍过.docx(55页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、考点11 二次函数一、二次函数的概念一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数,叫做二次函数二、二次函数解析式的三种形式(1)一般式:y=ax2+bx+c(a,b,c为常数,a0)(2)顶点式:y=a(xh)2+k(a,h,k为常数,a0),顶点坐标是(h,k)(3)交点式:y=a(xx1)(xx2),其中x1,x2是二次函数与x轴的交点的横坐标,a0三、二次函数的图象及性质1二次函数的图象与性质解析式二次函数y=ax2+bx+c(a,b,c是常数,a0)对称轴x=顶点(,)a的符号a>0a<0图象开口方向开口向上开口向下最值当x=时,y最小值=当x=时,y最
2、大值=最点抛物线有最低点抛物线有最高点增减性当x<时,y随x的增大而减小;当x>时,y随x的增大而增大当x<时,y随x的增大而增大;当x>时,y随x的增大而减小2.二次函数图象的特征与a,b,c的关系字母的符号图象的特征aa>0开口向上a<0开口向下bb=0对称轴为y轴ab>0(a与b同号)对称轴在y轴左侧ab<0(a与b异号)对称轴在y轴右侧cc=0经过原点c>0与y轴正半轴相交c<0与y轴负半轴相交b24acb24ac=0与x轴有唯一交点(顶点)b24ac>0与x轴有两个交点b24ac<0与x轴没有交点四、抛物线的平移
3、1将抛物线解析式化成顶点式y=a(xh) 2+k,顶点坐标为(h,k) 2保持y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:3注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式五、二次函数与一元二次方程的关系1二次函数y=ax2+bx+c(a0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a0)2ax2+bx+c=0(a0)的解是抛物线y=ax2+bx+c(a0)的图象与x轴交点的横坐标 3(1)b24ac>0方程有两个不相
4、等的实数根,抛物线与x轴有两个交点;(2)b24ac=0方程有两个相等的实数根,抛物线与x轴有且只有一个交点;(3)b24ac<0方程没有实数根,抛物线与x轴没有交点 六、二次函数的综合1、函数存在性问题解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;然后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在2、函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题(2
5、)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案(3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算考向一 二次函数的有关概念1二次函数的一般形式的结构特征:函数的关系式是整式;自变量的最高次数是2;二次项系数不等于零2一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化典例1 (2019·
6、北京临川学校初三月考)如果y=(m2)x是关于x的二次函数,则m=A1B2C1或2Dm不存在【答案】A【解析】依题意,解得m=1,故选A.【名师点睛】此题主要考察二次函数的定义,需要注意a.典例2 (2019·河北初三期中)下列函数是二次函数的是Ay=2x+2By=2xCy=x2+2Dy=x2【答案】C【解析】直接根据二次函数的定义判定即可A、y=2x+2,是一次函数,故此选项错误;B、y=2x,是正比例函数,故此选项错误;C、y=x2+2是二次函数,故此选项正确;D、y=x2,是一次函数,故此选项错误故选C1(2019·上饶市广信区第七中学初三月考)二次函数的图像的顶点坐
7、标是A(2,3)B(2,3)C(2,3)D(2,3)2(2019·湖北初三期中)将一元二次方程化为一般形式后,常数项为,二次项系数和一次项系数分别为A3,6B3,6C3,1D,考向二 二次函数的图象二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.典例3函数y=ax2+bx+a+b(a0)的图象可能是A BC D【答案】C【解析】A,由图象可知,开口向下,则a<0,又因为顶点在y轴左侧,则b<0,则a+b<0,而图象与y轴交点为(0,a+b)在y轴正半轴,与a+b<0矛盾,故此选项错误;B,
8、由图象可知,开口向下,则a<0,又因为顶点在y轴左侧,则b<0,则a+b<0,而图象与y轴交点为(0,1)在y轴正半轴,可知a+b=1与a+b<0矛盾,故此选项错误;C,由图象可知,开口向上,则a>0,顶点在y轴右侧,则b<0,a+b=1可能成立,故此选项正确;D,由图象可知,开口向上,则a>0,顶点在y轴右侧,则b<0,与y轴交于正半轴,则a+b>0,而图象与x轴的交点为(1,0),则a+b+a+b=0,显然a+b=0与a+b>0矛盾,故此选项错误故选C典例4如果二次函数y=ax2+bx+c(a0)的图象如图所示,那么下列不等式成立
9、的是Aa>0 Bb<0 Cac<0 Dbc<0【答案】C【解析】抛物线开口向下,a<0,抛物线的对称轴在y轴的右侧,x=>0,b>0,抛物线与y轴的交点在x轴上方,c>0,ac<0,bc>0故选C3如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是ABCD4已知函数y=ax+b的大致图象如图所示,那么二次函数y=ax2+bx+1的图象可能是ABCD5二次函数y=ax2+bx+c(a0)的图象如图所示,则下列结论正确的是Aa<0Bc>0Ca+b+c>0Db24ac<0考向三 二次函数的性质二次函数的解析
10、式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等典例5(2019·安徽初三月考)由二次函数y=3(x4)22可知A其图象的开口向下B其图象的对称轴为直线x=4C其顶点坐标为(4,2)D当x>3时,y随x的增大而增大【答案】B【解析】,a=3>0,抛物线开口向上,故不正确;对称轴为,故正确;顶点坐标为(4,2),故不正确;当时,随的增大而增大,故不正确;故选B【名师点睛】本题主要考查二次函数的性质,掌握抛物线的顶点式是解题的关键,即在中,顶点坐标为,对称轴a决定了开口方向.典例6(2019
11、·福建厦门外国语学校初三期中)在函数中,当随的增大而减小时,则的取值范围是ABCD【答案】D【解析】二次函数的对称轴为直线,时,随的增大而减小.故选D.【名师点睛】本题考查了二次函数的单调性二次函数y=ax2+bx+c(a,b,c为常数,a0),当a>0时,在对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大;当a<0时,在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小6(2019·南通市启秀中学初三期中)关于下列说法:(1)反比例函数,在每个象限内随的增大而减小;(2)函数,随的增大减小;(3)函数,当时,随的增大而减小,其中正确的有A
12、0个B1个C2个D3个7(2019·福建初三期中)若二次函数的图象经过A(m,n)、B(0,y1)、C(3m,n)、D(,y2)、E(2,y3),则y1、y2、y3的大小关系是ABCD考向四 二次函数的平移1抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方向有关2涉及抛物线的平移时,首先将表达式转化为顶点式y=a(xh)2+k的形式3抛物线的移动主要看顶点的移动,y=ax2的顶点是(0,0),y=a(xh)2的顶点是(h,0),y=a(xh)2+k的顶点是(h,k)4抛物线的平移口诀:自变量加减左右移,函数值加减上下移典例7如果将抛物线y=x22向右平移3个单
13、位长度,那么所得到的新抛物线的表达式是Ay=x25 By=x2+1Cy=(x3)22 Dy=(x+3)22【答案】C【解析】y=x22的顶点坐标为(0,2),向右平移3个单位长度,平移后的抛物线的顶点坐标为(3,2),所得到的新抛物线的表达式是y=(x3)22故选C【名师点睛】牢记抛物线的平移口诀可轻松解决此类问题典例8如图,如果把抛物线y=x2沿直线y=x向上方平移2个单位后,其顶点在直线y=x上的A处,那么平移后的抛物线解析式是Ay=(x+2)2+2By=(x+2)2+2Cy=(x2)2+2 Dy=(x2)2+2【答案】D【解析】如图,过点A作ABx轴于B,直线y=x与x轴夹角为45
14、76;,OA=2,OB=AB=2× =2,点A的坐标为(2,2),平移后的抛物线解析式是y=(x2)2+2故选D8已知抛物线C:y=x2+2x3,将抛物线C平移得到抛物线C,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是A将抛物线C沿x轴向右平移个单位得到抛物线CB将抛物线C沿x轴向右平移4个单位得到抛物线CC将抛物线C沿x轴向右平移个单位得到抛物线CD将抛物线C沿x轴向右平移6个单位得到抛物线C9把抛物线y=12x21先向右平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式为Ay=12(x+1)23 By=12(x1)23Cy=12(x+1)2+1 Dy=12
15、(x1)2+1考向五二次函数与一元二次方程、不等式的综合抛物线y=ax2+bx+c(a0)与x轴的交点个数及相应的一元二次方程根的情况都由=b24ac决定.1当>0,即抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根2当=0,即抛物线与x轴有一个交点(即顶点)时,方程ax2+bx+c=0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标3当<0,即抛物线与x轴无交点时,方程ax2+bx+c=0无实数根,此时抛物线在x轴的上方(a>0时)或在x轴的下方(a<0时)典例9 二次函数y=ax2+bx
16、+c中,函数y与自变量x的部分对应值如下表,则方程ax2+bx+c=0的一个解的范围是x6.176.186.19y0.030.010.02A0.03<x<0.01B0.01<x<0.02C6.18<x<6.19D6.17<x<6.18【答案】C【解析】由表格中的数据看出0.01和0.02更接近于0,故x应取对应的范围为:6.18<x<6.19,故选C 典例10如图是二次函数y=a(x+1)2+2图象的一部分,则关于x的不等式a(x+1)2+2>0的解集是Ax<2Bx>3C3<x<1Dx<3或x>
17、;1【答案】C【解析】二次函数y=a(x+1)2+2的对称轴为x=1,二次函数y=a(x+1)2+2与x轴的一个交点是(3,0),二次函数y=a(x+1)2+2与x轴的另一个交点是(1,0),由图象可知关于x的不等式a(x+1)2+2>0的解集是3<x<1故选C10如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是A1<x<5Bx>5Cx<1Dx<1或x>511抛物线y=2x24x+m的部分图象如图所示,则关于x的一元二次方程2x24x+m=0的解是_考向六二次函数的实际应用在生活中,我们常会遇
18、到与二次函数及其图象有关的问题,解决这类问题的一般思路:首先要读懂题意,弄清题目中牵连的几个量的关系,并且建立适当的直角坐标系,再根据题目中的已知条件建立数学模型,即列出函数关系式,然后运用数形结合的思想,根据函数性质去解决实际问题典例11(2019·湖北初三期中)飞机着陆后滑行的距离y(单位:m)关于滑行时间以(单位:)的函数解析式是y=6tt2在飞机着陆滑行中,滑行最后的150m所用的时间是sA10B20C30D10或30【答案】A【解析】当y取得最大值时,飞机停下来,则y=60t1.5t2=1.5(t20)2+600,此时t=20,飞机着陆后滑行600米才能停下来因此t的取值范
19、围是0t20;即当y=600150=450时,即60tt2=450,解得:t=10,t=30(不合题意舍去),滑行最后的150m所用的时间是2010=10,故选A【名师点睛】本题考查二次函数与一元二次方程综合运用,关键在于解一元二次方程.典例12(2019·河南初三期中)如图,一段抛物线:y=x(x4)(0x4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;如此变换进行下去,若点P(17,m)在这种连续变换的图象上,则m的值为A2B2C3D3【答案】D【解析】y=x(x4)(0x
20、4)记为C1,它与x轴交于两点O,A1,点A1(4,0),OA1=4,OA1=A1A2=A2A3=A3A4,OA1=A1A2=A2A3=A3A4=4,点P(17,m)在这种连续变换的图象上,17÷4=41,点P(17,m)在C5上,x=17和x=1时的函数值相等,m=1×(14)=1×(3)=3,故选D【名师点睛】本题考查二次函数的性质及旋转的性质,得出x=17和x=1时的函数值相等是解题关键.12(2019·安徽初三月考)如图所示的是跳水运动员10跳台跳水的运动轨迹,运动员从10高处的跳台上跳出,运动轨迹成抛物线状(抛物线所在平面与跳台墙面垂直).若运
21、动员的最高点离墙1,离水面,则运动员落水点离墙的距离是A2B3C4D513(2020·湖北初三期中)如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是求:(1)铅球在行进中的最大高度;(2)该男生将铅球推出的距离是多少m?考向七 存在性问题与动点问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数表达式,最后根据函数表达式判别图象的变化典例13 (2019·山西初三期末)综合与探究:已知二次函数的图象
22、与轴交于两点(点在点的左侧),与轴交于点.(1)求点的坐标;(2)求证:为直角三角形;(3)如图,动点同时从点出发,其中点以每秒个单位长度的速度沿边向终点运动,点以每秒姨个单位长度的速度沿射线方向运动当点停止运动时,点随之停止运动设运动时间为秒,连结,将沿翻折,使点落在点处,得到当点在上时,是否存在某一时刻,使得?(点不与点重合)若存在,求出的值;若不存在,请说明理由【答案】(1);(2)证明见解析;(3)存在;【解析】(1)当时,解得:点的坐标为,点的坐标为当时,点的坐标为为直角三角形由可知为直角三角形.且,又,沿翻折后,点落在轴上点处,由翻折知,当时,解得:t=,即:当t=秒时,【名师点睛
23、】本题考查二次函数解析式与坐标轴的交点,勾股定理的逆定理,相似三角形的判定和性质,全等三角形的判定及性质,综合性较强,掌握相关知识并灵活应用是本题的解题关键.14(2019·贵州初三期中)抛物线y=ax2+bx+c与x轴交于A,B两点(点A在点B的左侧),且A(1,0),B(4,0),与y轴交于点C,C点的坐标为(0,2),连接BC,以BC为边,点O为对称中心作菱形BDEC点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线交抛物线于点Q,交BD于点M.(1)求抛物线的解析式.(2)x轴上是否存在一点P,使三角形PBC为等腰三角形,若存在,请直接写出点P的坐标;若不存
24、在,请说明理由.(3)当点P在线段OB上运动时,试探究m为何值时,四边形CQMD是平行四边形?请说明理由. 1(2020·湖北初三期中)抛物线的对称轴是ABCD2(2020·湖北初三期中)将抛物线向右平移4个单位长度,再向下平移1个单位长度,所得抛物线为ABCD3(2020·荆门市屈家岭管理区第一初级中学初三期中)若b<0,则二次函数y=x2+2bx1的图象的顶点在A第一象限B第二象限C第三象限D第四象限4(2019·山西初三期末)如图是二次函数的图象,使成立的的取值范围是ABCD5(2020·荆门市屈家岭管理区第一初级中学初三期中)直线
25、y=ax+b和抛物线y=ax2+bx+c在同一坐标系中的图象可能是ABCD6(2020·荆门市屈家岭管理区第一初级中学初三期中)若函数y=mx2+2x+1的图像与x轴只有一个公共点,则常数m的值为Am=1Bm=1或m=2Cm=0Dm=1或m=07(2019·安徽初三期末)如图,边长为的正的边在直线上,两条距离为的平行直线和垂直于直线,和同时向右移动(的起始位置在点),速度均为每秒个单位,运动时间为(秒),直到到达点停止,在和向右移动的过程中,记夹在和间的部分的面积为,则关于的函数图象大致为ABCD8(2019·新疆初三期末)如图,已知抛物线y1x2+1,直线y2x
26、+1,当x任取一值时,x对应的函数值分别为y1,y2若y1y2,取y1,y2中的较小值记为M;若y1y2,记My1y2例如:当x2时,y13,y21,y1<y2,此时M3下列判断中:当x<0时,My1;当x>0时,M随x的增大而增大;使得M大于1的x值不存在;使得M的值是或,其中正确的个数有A1B2C3D49抛物线y=(x2)(x+3)与y轴的交点坐标是_10若A(3.5,y1)、B(1,y2)、C(1,y3)为二次函数y=x24x+5的图象上三点,则y1,y2,y3的大小关系是_(用>连接)11二次函数y=x(x6)的图象的对称轴是_12已知一个二次函数的图象经过A(
27、1,6)、B(3,6)、C(0,3)三点,求这个二次函数的解析式,并指出它的开口方向13为了改善小区环境,某小区决定要在一块一边靠墙(墙长25 m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40 m的栅栏围住(如图)设绿化带的BC边长为x m,绿化带的面积为y m2(1)求y与x之间的函数关系式,并写出自变量x的取值范围(2)当x为何值时,满足条件的绿化带的面积最大?14已知二次函数y=x2x+(1)用配方法把这个二次函数的解析式化为y=a(x+m)2+k的形式;(2)写出这个二次函数图象的开口方向、顶点坐标和对称轴;(3)将二次函数y=x2的图象如何平移能得到二次函数
28、y=x2x+的图象,请写出平移方法15如图,抛物线的顶点坐标为,并且与轴交于点,与轴交于、两点(1)求抛物线的表达式(2)如图1,设抛物线的对称轴与直线交于点,点为直线上一动点,过点作轴的平行线,与抛物线交于点,问是否存在点,使得以、为顶点的三角形与BCO相似若存在,求出点的坐标;若不存在,请说明理由16如图,二次函数的图象与轴交于点A、B,与轴交于点C(1)_;_;(2)点P为该函数在第一象限内的图象上的一点,过点P作于点Q,连接PC,求线段PQ的最大值;若以P、C、Q为顶点的三角形与ABC相似,求点P的坐标 1(2019重庆)抛物线的对称轴是A直线B直线C直线D直线2(2019荆门)抛物线
29、与坐标轴的交点个数为A0B1C2D33(2019咸宁)已知点在同一个函数的图象上,这个函数可能是ABCD4(2019 青岛)已知反比例函数y=的图象如图所示,则二次函数y=ax2-2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是A°B°C°D5(2019哈尔滨)将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为ABCD6(2019成都)如图,二次函数的图象经过点,下列说法正确的是ABCD图象的对称轴是直线7(2019雅安)在平面直角坐标系中,对于二次函数,下列说法中错误的是A的最小值为1B图象顶点坐标为(2,1),对称轴为直线C当时
30、,的值随值的增大而增大,当时,的值随值的增大而减小D它的图象可以由的图象向右平移2个单位长度,再向上平移1个单位长度得到8(2019岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是Ac<-3Bc<-2Cc<Dc<19(2019泸州)已知二次函数(其中是自变量)的图象与轴没有公共点,且当时,随的增大而减小,则实数的取值范围是ABCD10(2019随州)如图所示,已知二次函数的图象与轴交于两点,与轴交于点,对称轴为直线,则下列结论:;是
31、关于的一元二次方程的一个根其中正确的有A1个B2个C3个D4个11(2019南通)如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分,下列说法不正确的是A25 min50 min,王阿姨步行的路程为800 mB线段CD的函数解析式为C5 min20 min,王阿姨步行速度由慢到快D曲线段AB的函数解析式为12(2019嘉兴)小飞研究二次函数y=(xm)2m+1(m为常数)性质时如下结论:这个函数图象的顶点始终在直线y=x+1上;存在一个m的值,使得函数图象的顶点与轴的两个交点构成等腰直角三角形;点A(x1,y1)与点B(x2,
32、y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;当1<x<2时,y随x的增大而增大,则m的取值范围为m2其中错误结论的序号是ABCD13(2019山西)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式
33、为Ay=x2By=-x2Cy=x2Dy=-x214(2019哈尔滨)二次函数y=-(x-6)2+8的最大值是_15(2019安徽)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x-a+1和y=x2-2ax的图象相交于P,Q两点若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是_16(2019凉山州)当时,直线与抛物线有交点,则a的取值范围是_17(2019济宁)如图,抛物线与直线交于A(-1,P),B(3,q)两点,则不等式的解集是_18(2019广安)在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由
34、此可知该生此次实心球训练的成绩为_米19(2019凉山州)已知二次函数的图象与x轴交于两点,且,求a的值20(2019湖州)已知抛物线与轴有两个不同的交点(1)求的取值范围;(2)若抛物线经过点和点,试比较与的大小,并说明理由21(2019威海)在画二次函数的图象时,甲写错了一次项的系数,列表如下:-1012363236乙写错了常数项,列表如下:-10123-2-12714通过上述信息,解决以下问题:(1)求原二次函数的表达式;(2)对于二次函数,当_时,的值随的值增大而增大;(3)若关于的方程有两个不相等的实数根,求的取值范围22(2019宿迁)超市销售某种儿童玩具,如果每件利润为40元(市
35、场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件根据市场调查发现,销售单价每增加2元,每天销售量会减少1件设销售单价增加元,每天售出件(1)请写出与之间的函数表达式;(2)当为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?23(2019潍坊)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2
36、)某水果店从果农处直接批发,专营这种水果调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计)24(2019南充)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加一支,单价降低0.1元;超过50支,均按购买5
37、0支的单价销售,笔记本一律按原价销售,学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等学生多少人时,购买奖品金额最少,最少为多少元?25(2019梧州)我市某超市销售一种文具,进价为5元/件售价为6元/件时,当天的销售量为100件在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件设当天销售单价统一为x元/件(x6,且x是按0.5元的倍数上涨),当天销售利润为y元(1)求y与x的函数关系式(不要求写出自变量的取值范围);(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过80%,要想当天获得利润最
38、大,每件文具售价为多少元?并求出最大利润26(2019云南)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值27(2019成都)随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如
39、图所示的一次函数关系(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p=x+来描述根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?28(2019武汉)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量×(售价-进价)(1)求y关于x的函数解析式(不要求写出自变量的取值范围);该商品
40、进价是_元/件;当售价是_元/件时,周销售利润最大,最大利润是_元(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系若周销售最大利润是1400元,求m的值变式拓展1【答案】A【解析】,二次函数的图象的顶点坐标是(2,3),故选A.【名师点睛】此题考查二次函数的性质,解题关键在于掌握其顶点式一般形式的特点.2【答案】A【解析】一元二次方程3x2+1=6x化为一般形式是3x26x+1=0,各项的系数分别是:3,6故选A【名师点睛】本题考查了一元二次方程的解,解答本题要通过移项,转化为
41、一般形式,注意移项时符号的变化3【答案】D【解析】当a>0,b>0时,抛物线开口向上,对称轴x=<0,在y轴左边,与y轴正半轴相交,无选项符合;当a<0,b<0时,抛物线开口向下,对称轴x=<0,在y轴左边,与y轴正半轴相交,D选项符合故选D 4【答案】D【解析】根据一次函数的图象可得a>0,b<0则二次函数开口向上,对称轴在y轴的右侧故选D5【答案】C【解析】由图象知,开口向上,a>0,故A错误;由图象知,与y轴的交点在负半轴,c<0,故B错误;令x=1,则a+b+c>0,故C正确;抛物线与x轴有两个交点,= b24ac &g
42、t;0,故D错误故选C6【答案】C【解析】(1)反比例函数,当m>0时,图象在第一、三象限,在每个象限内随的增大而减小,当m<0时,图象在第二、四象限,在每个象限内随的增大而增大,故(1)的说法错误;(2)函数中k=,随的增大减小,故(2)的说法正确;(3)函数中a=,函数图象开口向下,对称轴为直线x=0,所以当时,随的增大而减小,故(3)的说法正确.故选C.【名师点睛】此题主要考查了反比例函数、正比例函数和二次函数的图象与性质,熟练掌握它们的性质是解决此题的关键.7【答案】A【解析】经过A(m,n)、C(3m,n),二次函数的对称轴x=,B(0,y1)、D(,y2)、E(2,y3
43、)与对称轴的距离B最远,D最近,|a|>0,y1>y3>y2;故选A【名师点睛】此题考查二次函数的图象及性质;熟练掌握函数图象上点的特征是解题的关键8【答案】B【解析】抛物线C:y=x2+2x3=(x+1)24,抛物线对称轴为直线x=1抛物线与y轴的交点为A(0,3)则与A点关于直线x=1对称的点是B(2,3)若将抛物线C平移到C,并且C,C关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称,则B点平移后坐标应为(4,3)因此将抛物线C向右平移4个单位长度故选B9【答案】B【解析】把抛物线y=12x21先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为y=12(x1)23,故选B10【答案】A【解析】由图可知,对称轴为直线x=2,抛物线与x轴的一个交点坐标为(5,0),抛物线与x轴的另一个交点坐标为(1,0),又抛物线开口向下,不等式ax2+bx+c>0的解集是1<x<5故选A11【答案】x1=1,x2=3【解析】观察图象可知,抛物线y=2x24x+m与x轴的一个交点为(1,0),对称轴为x=1,抛物线与x轴的另一交点坐标为(3,0),一元二次方程2x24x+m=0的解为x1=1,x2=