《《中考课件初中数学总复习资料》专题50 中考数学新定义型试题解法(原卷版).docx》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》专题50 中考数学新定义型试题解法(原卷版).docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、专题50 中考数学新定义型试题解法1.新定义问题所谓“新定义”试题指给出一个从未接触过的新规定,要求现学现用,“给什么,用什么”是应用新“定义”解题的基本思路这类试题的特点:源于中学数学内容但又是学生没有遇到过的新信息,它可以是新的概念、新的运算、新的符号、新的图形、新的定理或新的操作规则与程序等等. 在解决它们过程中又可产生了许多新方法、新观念,增强了学生创新意识2.新定义问题类型主要包括以下几种类型:(1)概念的“新定义”;(2)运算的“新定义”;(3)规则的“新定义”;(4)实验操作的“新定义”;(5)几何图形的新定义3.新定义问题解题策略“新定义型专题”关键要把握两点:一是掌握问题原型
2、的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移。【例题1】(2020河南)定义运算:mnmn2mn1例如:424×224×217则方程1x0的根的情况为()A有两个不相等的实数根B有两个相等的实数根C无实数根D只有一个实数根【对点练习】定义:对于实数a,符号a表示不大于a的最大整数例如:5.7=5,5=5,-=-4(1)如果a=-2,那么a的取值范围是 -2a-1(2)如果=3,求满足条件的所有正整数x【例题2】(2021广东深圳模拟)定义新运算:ab=,则函数y=3x的图象大致是( )ABCD【对点练习】(2020甘肃兰州模拟)
3、通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。类似的,可以在等腰三角形中建立边角之间的联系。我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图在ABC中,AB=AC,顶角A的正对记作sadA,这时sadA.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°= .(2)对于0°<A<180°,A的正对值sadA的取值范围是 .(3)如图,已知sinA,其中A为锐角,试求sadA的值.AABCCB图图【例题3】
4、(2020咸宁)定义:有一组对角互余的四边形叫做对余四边形理解:(1)若四边形ABCD是对余四边形,则A与C的度数之和为 ;证明:(2)如图1,MN是O的直径,点A,B,C在O上,AM,CN相交于点D求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,ABBC,ABC60°,探究线段AD,CD和BD之间有有怎样的数量关系?写出猜想,并说明理由【对点练习】(2020广东佛山模拟)阅读材料我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形
5、;我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;请解决以下问题:如图,我们把满足AB=AD、CB=CD且ABBC的四边形ABCD叫做“筝形”;(1)写出筝形的两个性质(定义除外);(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明一、选择题1.(2019湖南岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点如果二次函数yx2+2x+c有两个相异的不动点x1.x2,且x11x2,则c的取值范围是()Ac3Bc2CcDc1二、填空题2.(2020山东枣庄模拟)定义:a是不为1的有理数,我们
6、把称为a的差倒数如:2的差倒数是,1的差倒数是已知a1,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,依此类推,a2009 3.(2020毕节地区)对于两个不相等的实数a、b,定义一种新的运算如下,如:,那么6*(5*4)= 4.(2020重庆江津区)我们定义,例如=2×53×4=1012=2,若x,y均为整数,且满足13,则x+y的值是 5(2021浙江台州模拟)定义一种新运算:ab,则2343的值_6(2021湖北随州模拟)对于定义一种新运算“”,其中是常数,等式右边是通常的加法和乘法运算已知,则的值为_7(2021山东乐陵模拟)对于、定义一种新运算“*”
7、:,其中、为常数,等式右边是通常的加法和乘法的运算已知:,那么_8.(2019湖北十堰)对于实数a,b,定义运算“”如下:ab(a+b)2(ab)2若(m+2)(m3)24,则m 9.定义一种新运算:x*y=,如2*1=2,则(4*2)*(1)=10(2019湖南常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形根据规定判断下面四个结论:正方形和菱形都是广义菱形;平行四边形是广义菱形;对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;若M、N的坐标分别为(0,1),(0,1),P是二次函数yx2的图象上在第一象限内的任意一点,PQ垂直直线y1于点Q,则四边形P
8、MNQ是广义菱形其中正确的是(填序号)11阅读材料:设(x1,y1),(x2,y2),如果,则x1y2x2y1,根据该材料填空,已知(4,3),(8,m),且,则m 三、解答题12(2021河北石家庄模拟)定义新运算:对于任意实数,、,都有,等式右边是通常的加法、减法及乘法运算,比如:(1)求,求的值;(2)若的值小于10,请判断方程:的根的情况13(2020遂宁)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数ya1x2+b1x+c1(a10,a1、b1、c1是常数)与ya2x2+b2x+c2(a20,a2、b2、c2是常数)满足a1+a20,b1b2,c1
9、+c20,则这两个函数互为“旋转函数”求函数y2x23x+1的旋转函数,小明是这样思考的,由函数y2x23x+1可知,a12,b13,c11,根据a1+a20,b1b2,c1+c20,求出a2,b2,c2就能确定这个函数的旋转函数请思考小明的方法解决下面问题:(1)写出函数yx24x+3的旋转函数(2)若函数y5x2+(m1)x+n与y5x2nx3互为旋转函数,求(m+n)2020的值(3)已知函数y2(x1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y2(x1)(x+3)互为“旋转函数”
10、14.(2020年浙江宁波)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角(1)如图1,E是ABC中A的遥望角,若A,请用含的代数式表示E(2)如图2,四边形ABCD内接于O,四边形ABCD的外角平分线DF交O于点F,连结BF并延长交CD的延长线于点E求证:BEC是ABC中BAC的遥望角(3)如图3,在(2)的条件下,连结AE,AF,若AC是O的直径求AED的度数;若AB8,CD5,求DEF的面积来源:学。科。网Z。X。X。K来源:Zxxk.Com来源:Z#xx#k.Com来源:Z|xx|k.Com来源:学_科_网15(2020连云港)在
11、平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”如图,抛物线L1:y=12x2-32x2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C抛物线L2与L1是“共根抛物线”,其顶点为P(1)若抛物线L2经过点(2,12),求L2对应的函数表达式;(2)当BPCP的值最大时,求点P的坐标;(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧若DPQ与ABC相似,求其“共根抛物线”L2的顶点P的坐标16. (2019重庆)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自
12、然数“纯数”.定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由.17(2019湖北咸宁)定义:有一组邻边相等且对角互补的四边形叫做等补四边形理解:(1)如图1,点A,B,C在O上,ABC的平分线交O于点D,连接AD,CD求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四
13、边形ABCD中,ABAD,连接AC,AC是否平分BCD?请说明理由运用:(3)如图3,在等补四边形ABCD中,ABAD,其外角EAD的平分线交CD的延长线于点F,CD10,AF5,求DF的长18.如图1,O的半径为r(r>0),若点P在射线OP上,满足OPOP=r2,则称点P是点P关于O的“反演点”,如图2,O的半径为4,点B在O上,BOA=60°,OA=8,若点A、B分别是点A,B关于O的反演点,求AB的长.19(2019江苏常熟)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”例如,正方形的宽距等于它的对角线的长度(1)写出下列图
14、形的宽距:半径为1的圆: ;如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“: ;(2)如图2,在平面直角坐标系中,已知点A(1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d若d2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);若点C在M上运动,M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上对于M上任意点C,都有5d8,直接写出圆心M的横坐标x的取值范围20(2020湖北随州模拟)在平面直角坐标系中,我们定义直线yaxa为抛物线yax2bxc(a、b、c为常数,a0)的“梦想直线”;有一个顶点在抛物线上
15、,另一个顶点在y轴上的三角形为其“梦想三角形”已知抛物线与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C(1)填空:该抛物线的“梦想直线”的解析式为 ,点A的坐标为 ,点B的坐标为 ;(2)如图,点M为线段CB上一动点,将ACM以AM所在直线为对称轴翻折,点C的对称点为N,若AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由21在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1x2,y1y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图(1)已知点A的坐标为(1,0),若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)O的半径为,点M的坐标为(m,3),若在O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围